Thyroid cancer treatment is very successful. About 95% of thyroid cancer patients live more than five years, and most thyroid cancer patients experience a normal life span and full quality of life after appropriate treatment. Even patients with advanced thyroid cancer may often do well with modern targeted therapies.
The key components of thyroid cancer treatment for most types of thyroid cancer are surgery, thyroid stimulating hormone suppression, and ongoing surveillance of tumor markers with dynamic risk stratification. Patients with a high risk of disease recurrence may also be offered radiation therapy with radioactive iodine. Newer targeted therapies and immunotherapy may be used for patients with advanced and metastatic disease outside of the neck.
* Differentiated thyroid cancer includes Papillary, Follicular, and Hurthle cell thyroid cancer. Treatment for poorly differentiated, anaplastic, and medullary thyroid cancers are distinct and discussed separately.
Surgery is the cornerstone of treatment for most types of thyroid cancer. If the physician suspects that the cancer has spread to lymph nodes in the neck, these will also be removed during surgery. A complete surgery is sufficient treatment for the majority of patients with thyroid cancer.
Choosing the Right Surgery
Thyroid surgery is done through a 1-2 inch incision that is placed in one of the skin creases of the neck, just above the collarbones. We remove one half of the thyroid at a time, so the incision for a thyroid lobectomy and total thyroidectomy are the same size. The size of the incision is kept small as possible for the best cosmetic result. The crucial parts of the surgery are 1) exposing the thyroid gland, 2) identifying and protecting the parathyroid glands, 3) identifying and protecting the nerve to the vocal cord, 4) removal of the thyroid gland.
In most cases, surgery is approximately 1.5 hours for thyroid lobectomy, and 2 hours for a total thyroidectomy. Patients are completely asleep for these procedures.
After surgery patients are observed for a 6-hour period. This is done as a precaution so we can detect and treat any delayed bleeding or swelling. After this period, it is safe for patients to go home if they do not live too far away from the hospital and have family or friends that can stay with them the first night. Otherwise, patients can stay overnight and return home the following morning.
During recovery, pain is usually mild. Most patients only need Tylenol or Advil for pain, and only ~5% need opioid pain medication for additional pain relief. There is no special diet required after surgery.
There is no need to rest the voice after surgery. We encourage patients to resume normal activities, except to avoid heavy lifting for a few weeks. Patients commonly engage in regular exercise about 5-7 days after surgery and can swim after about 2 weeks. Patients should expect to feel more tired than usual after surgery, and we recommend anticipating taking a week off of work to recover.
Thyroid Lobectomy | Total Thyroidectomy | |
---|---|---|
Benefits | No risk to the opposite vocal cord nerve | Required to receive radioactive iodine |
No risk of insufficient parathyroid hormone | Allows monitoring using a blood test (thyroglobulin) | |
Risks | 25% chance of needing thyroid hormone supplementation | Will need lifelong replacement of thyroid hormone (100%) |
2.5% risk of temporary hoarseness | 5% risk of temporary hoarseness | |
<1% hematoma, infection | <1% hematoma, infection | |
May need 2nd surgery to remove other half of thyroid | 3% risk of insufficient parathyroid hormone |
A new technique called Transoral Endoscopic Thyroidectomy Vestibular Approach (TOETVA) has been developed. With this surgery, the thyroid gland is removed without leaving any visible scars in the neck. Small incisions are made inside the mouth, and the thyroid gland is removed using a video camera and laparoscopic instruments. In some cases, an additional well-hidden ½ inch incision is made just under the chin.
Good candidates for Scarless Thyroidectomy include patients with smaller thyroid nodules or cancers. This technique is not appropriate for patients with very large or invasive thyroid cancers.
Following surgery, patients may be treated with thyroid hormone to provide physiologic hormone replacement and to sufficiently suppress pituitary gland secretion of thyroid stimulating hormone (TSH), which is a growth-promoting factor for many types of thyroid cancer. All patients treated with total thyroidectomy (complete thyroid removal) require thyroid hormone therapy with levothyroxine; approximately 25% of patients treated with lobectomy (partial thyroid removal) require thyroid hormone therapy. Thyroid hormone replacement is usually provided as a daily oral pill called levothyroxine. Your endocrinologist will monitor blood tests, including a TSH level, to determine the optimal dose for managing your thyroid hormone balance and the recurrence risk of your thyroid cancer (see Dynamic Risk Stratification below). In general, patients with more aggressive disease and higher risk of recurrence are initially managed with levothyroxine to suppress the TSH level (<0.1mIU/L), while patients with lower risk of recurrence and/or other health factors that would increase their risk from side effects are managed with a TSH in the lower half of the normal reference range (2-0.5mIU/L). Levothyroxine thyroid hormone therapy and TSH suppression in thyroid cancer patients are individualized and change over time based upon the risk of disease recurrence.
Fortunately, a well-tolerated and safe form of thyroid hormone therapy is available, called levothyroxine (also known as Levoxyl or Synthroid; Tirosint is a gluten free formulation). This is the recommended medication to treat hypothyroidism following thyroid surgery and to suppress TSH in patients with a history of thyroid cancer. Most patients achieve a normal thyroid balance and feel well within 6-8 weeks of starting therapy or sooner when followed by an endocrinologist. Your doctor will monitor thyroid function tests over time to ensure that your dose is optimal for both your thyroid balance and controlling your thyroid cancer. More information about thyroid hormone tests and thyroid hormone medication can be found here: Normal Thyroid Hormone Levels >
Patients with a high risk of disease recurrence may also be offered radiation therapy with radioactive iodine. At UCLA, we estimate that about 1 in 4 patients may need radioactive iodine as part of their thyroid cancer treatment. Radioactive iodine takes advantage of the preferential uptake of iodine by thyroid tissue to allow radiation treatment of residual and microscopic thyroid cancer with minimal side effects on other organs. Therapy is done in collaboration with a nuclear medicine physician and is given by an oral pill that the patient swallows. Patients remain isolated at home or in the hospital for several days after taking the radioactive iodine, followed by an imaging scan 5 days after therapy. To improve the efficacy of RAI therapy, patients are asked to follow a low iodine diet for 10-14 days prior to therapy and may be instructed to withdrawal from thyroid hormone medication or receive an injection of Thyrogen to sensitize any remaining thyroid tissue to RAI. Additional information about radioactive iodine therapy and a low iodine diet can be found on the American Thyroid Association patient education site. Radioactive iodine therapy is generally safe and can be highly effective for some kinds of thyroid cancer. Common side effects include dry mouth and eyes after therapy. Recent data suggests that even lower doses of radioactive iodine may be effective in reducing the risk of thyroid cancer recurrence, further reducing the risks of side effects from radioactive iodine ablation therapy.
After initial therapy for thyroid cancer, patients continue regular disease surveillance under the care of an endocrinologist. Ongoing disease monitoring includes measurement of tumor marker thyroglobulin in the blood and thyroid/neck ultrasound imaging at regular intervals.
Thyroglobulin levels are usually evaluated 4-6 weeks after initial therapy, at 6 months, and then every 6-12 months based upon clinical response. Thyroid ultrasound surveillance typically occurs at 12 months after therapy and annually thereafter.
Your endocrinologist will follow your tumor marker thyroglobulin over time. Persistently elevated or a rising thyroglobulin tumor marker may prompt your physician to perform other evaluations to locate persistent or recurrent thyroid cancer, such as a physical exam, neck ultrasound or computed tomography (CT) imaging, or iodine uptake whole body scans.
At the UCLA Endocrine Center, we utilize a strategy of dynamic risk stratification during thyroid cancer follow-up. Dynamic risk stratification incorporates measurement of tumor markers and imaging surveillance information to continually re-evaluate in each patient the risk of clinically significant thyroid cancer recurrence or progression. This risk stratification then guides recommendations for further diagnostic evaluation, TSH suppression and additional therapy in a way that optimally balances the benefits of additional treatment with risks and side effects. For example, thyroid hormone suppression of TSH is relaxed in patients with excellent response to treatment and low risk of recurrence to minimize the risk of heart arrhythmias and osteoporosis that can result from long term TSH suppression therapy.
While surgery is the initial management for most thyroid cancers, in an appropriately selected group of patients with low risk disease, active surveillance may be an alternative strategy to immediate surgery.
Specifically, active surveillance may be ideal for patients with small (
Recent data suggest that management with active surveillance may allow patients with low risk disease to avoid or delay surgery for thyroid cancer without significant increases in disease spread or overall survival outcomes.
UCLA endocrine surgeon James Wu, MD, presented a live-streaming webinar to discuss active surveillance of low-risk tumors, a recommended treatment approach for many incidentally discovered papillary thyroid cancers.
Every year, approximately 50,000 new diagnoses of thyroid cancer are made. Since very few patients die from their thyroid cancer, recurrences are frequently encountered. Fortunately, most recurrences in the neck can still salvaged with surgical resection.
Recurrences can be detected through blood tests, neck ultrasound, and physical examination. Consultation with an endocrinologist and endocrine surgeon should be sought to determine the site and extent of recurrent disease.
Treatment options for recurrent thyroid cancer include additional surgery, use of radioactive iodine, targeted therapies, and in some cases, observation with close monitoring. The choice of further treatment often hinges on the location and extent of the recurrent disease and response to prior therapy. Diseased lymph nodes in the neck are usually removed surgically. Disease outside the neck is often treated with radioactive iodine, external beam radiation, or new systemic targeted therapies.
For advanced thyroid cancer that persists or recurs after surgery, radioactive iodine ablation, and thyroid hormone TSH suppression, additional therapies may be required. Furthermore, patients with poorly differentiated or anaplastic thyroid cancer often require systemic targeted therapy or immunotherapy given in collaboration with medical oncologists.
Improved understanding of the pathogenesis of these cancers is leading to the development of new agents aimed at specific oncogenic mechanisms, called targeted therapies. Targeted therapies approved for the treatment of advanced thyroid cancer include tyrosine kinase inhibitors (lenvatinib, sorafenib, and cabozantinib), multi-kinase inhibitor vandetinib, and RET fusion inhibitor selpercatinib. Additionally, clinical trials are ongoing to evaluate BRAF inhibitors and immunotherapy with checkpoint inhibitors in patients with advanced thyroid cancers.
In rare situations, thyroid cancer spreads to other sites in the body, including the lungs, bones, and brain. Disease in these sites may not be amenable to surgical resection and therefore adjuvant therapies are often used. Lung metastases are the most common site of distant thyroid cancer spread. When lung metastases are large or cause symptoms like shortness of breath, treatment with radioactive iodine, external beam radiation, or targeted therapies may be recommended. Bone thyroid cancer metastases can also occur rarely and may cause bone pain or increased risk of fracture. Treatments available for thyroid cancer bone metastases include external beam radiation, systemic targeted therapy, and bone strengthening medications.
As a referral center for difficult cases, we also have experience in treating patients with special circumstances.
Genetic Syndromes
We are also part of specialized teams that care for patients and their families with:
Phone: 310-267-7838