Jules Stein Eye Institute

DIRECTOR
Bartly J. Mondino, MD

FACULTY ADVISOR
Debora B. Farber, PhD, DPhhc

MANAGING EDITOR
Gloria P. Jurisic

EDITORS
Irene Y. Chen
Tina-Marie Gauthier

PHOTOGRAPHY
J. Charles Martin

DESIGN
Ikkanda Design Group

PRINTING
Marina Graphic Center

©2008, by the Regents of the University of California.
All rights reserved.

Printed on recycled paper using soy base inks

This report covers the period July 1, 2007, through June 30, 2008.

Requests for additional copies of the publication
Jules Stein Eye Institute
may be sent to:

Office of the Managing Editor
Jules Stein Eye Institute
100 Stein Plaza, UCLA
Box 957000
Los Angeles, California 90095–7000
Phone: (310) 206-7178

For more information on the Institute, see our website: www.jsei.org

The emblem of the Jules Stein Eye Institute is adapted from the schematic eye used by Sir Isaac Newton in his classic treatise on human vision—“Opticks”—published in 1704. The horizontal lines extending from the surface of the eye represent Newton’s concept of the major colors that are in the spectrum of light.
Contents

JULES STEIN v
DORIS STEIN v

BOARD OF TRUSTEES vi

EXECUTIVE COMMITTEE vii

FACILITIES viii

HIGHLIGHTS 1
 Honors 3
 Research 6
 Education 7
 Philanthropy 10
 Thank You 12
 Community Outreach 13

FACULTY 15

PROGRAMS 63
 Patient Care Services 64
 Research and Treatment Centers 65
 Clinical Laboratories 72
 Training Programs 74

APPENDICES 81
 Volunteer and Consulting Faculty 82
 Residents and Fellows 84
 Endowed Professorships, Fellowships, and Other Funds 86
 Educational Offerings 90
 Research Contracts and Grants 93
 Clinical Research Studies 106
 Publications of the Full-Time Faculty 111
 Giving Opportunities 124
The legacy of Dr. and Mrs. Jules Stein arises from their role in the 20th century as visionaries. Through brilliance and beneficence, they created a multitude of programs aimed specifically at one goal—preserving and restoring eyesight. They approached this task dauntlessly, integrating the worlds of business, medicine, and philanthropy in such a way as to enhance each and leave in trust the promise of limitless accomplishment in the advancement of eye research and treatment. The Jules Stein Eye Institute was established as a result of their philanthropy.
Jules Stein is the foremost benefactor in the world history of vision science and blindness prevention. He combined his love for music and medicine with a unique talent for analysis and organization to produce a lifetime of celebrated achievements as musician, physician, business leader, and humanitarian.

Born in South Bend, Indiana, in 1896, Jules Stein received a PhB from the University of Chicago at age 18 followed by a MD degree from Rush Medical College. After completing postgraduate studies at the University of Vienna and Chicago’s Cook County Hospital, he began medical practice and was certified by the American Board of Ophthalmology.

A musician from an early age, he financed his education by playing in and leading his own band. As his reputation increased, he began booking other musicians for professional engagements, and in 1924 founded Music Corporation of America (MCA). Shortly thereafter, he gave up the practice of medicine to concentrate on this enterprise. Within 10 years, MCA represented most of the great name bands and corporate activities began to extend to representation of film stars, directors, writers, and musical artists. MCA entered the promising new field of television at its inception, eventually acquiring the Universal City property, Universal Pictures, and other enterprises to become pre-eminent in the entertainment industry.

Throughout his phenomenally successful career, Jules Stein maintained a strong interest and emotional investment in medicine, particularly his own field of ophthalmology. In the late 1950s, urged by his wife, Doris, he chose to direct his considerable talents to blindness prevention. The result was a concert of ideas and achievements that encompassed philanthropy, government, and academic medicine.

By his efforts, Research to Prevent Blindness was created, now recognized as the world’s leading voluntary organization in support of studies of the eye and its diseases. Jules Stein was largely responsible for the passage of legislation to establish the National Eye Institute as a separate entity in the National Institutes of Health. Under his leadership, the Jules Stein Eye Institute was founded as a multidisciplinary center for vision science. Since its establishment, the Institute has become internationally identified as the focus for coordinated programs of research in the sciences related to vision, ophthalmic education, and the care of patients with eye disease. Jules Stein died in 1981, leaving a legacy of hope to the world. Through his accomplishments and philanthropy, he created ever replenishing resources for eye research and the means to preserve and restore sight for future generations.

Doris Stein’s purposeful, yet richly varied life earned the respect and affection of the many people who benefited from her humanitarianism. Inspiring partner of her husband for more than half a century, Doris Stein shared with him the accomplishments of his philanthropic endeavors and guided his interests in ophthalmology, beginning with a visit to the New York Lighthouse for the Blind in the late 1950s. Deeply moved, Doris Stein urged her husband to “do something!” From that passionate beginning came a broad base of programs that catalyzed eye research.

Doris Stein was a major force in this vision renaissance. She served as an officer and director of Research to Prevent Blindness, personally leading the appeal to establish more resources for investigations into eye diseases. She suggested that Jules Stein assume the principal role in the creation of an eye institute at UCLA, and her unflagging enthusiasm nurtured the Institute’s development as a unique provider of every facet of vision research and patient care. Serving as Trustee, she focused special attention on Institute initiatives to combat blindness throughout the world. She devoted her last days, until her death in 1984, to the development of an expansion and companion building for eye research. In 1989, dedication ceremonies were held for the Doris Stein Eye Research Center.

With grace, vision, and meaningful action, Doris Stein enhanced the lives of all privileged to know her, stimulated a cascade of progress in eye research, co-founded the Institute with its boundless scientific potential, and extended the miracle of sight to untold numbers of people.
The Jules Stein Eye Institute Board of Trustees was established in 1977 to ensure the Institute’s orderly growth and development. The Board meets regularly during the year, with each Trustee providing his/her unique counsel. Collectively, their invaluable contributions have included fiscal planning for the Institute, adoption of measures to facilitate recruitment of the world’s finest vision scientists, allocation of funds for the purchase of vision research equipment, and recommendations for facilities expansion programs.

Current Members

Bartly J. Mondino, MD
Director
Jules Stein Eye Institute
1994–present

Ronald L. Olson, Esq.
Partner
Munger, Tolles, and Olson
1995–present

Gerald H. Oppenheimer
President
Gerald Oppenheimer
Family Foundation
President
Systems Design Associates
1992–present

Andrea L. Rich, PhD
Retired President, Chief Executive Officer and Director
Los Angeles County Museum of Art
Executive Vice Chancellor Emerita
UCLA
2007–present

Nelson C. Rising, Esq.
Chairman and CEO
Rising Realty Partners, LLC
2004–present

George A. Smith, Esq.
Consultant
1992–present

Katrina Vanden Heuvel
Publisher and Editor
The Nation Magazine
1984–present

Casey Wasserman
Chief Executive Officer
The Wasserman Foundation
1998–present
EXECUTIVE COMMITTEE

Director, Jules Stein Eye Institute
Chairman, UCLA Department of Ophthalmology
Bartly J. Mondino, MD

Associate Directors, Jules Stein Eye Institute
Wayne L. Hubbell, PhD
Gabriel H. Travis, MD

Vice-Chairmen, UCLA Department of Ophthalmology
Sherwin J. Isenberg, MD
Arthur L. Rosenbaum, MD

Chief Administrative Officer, Jules Stein Eye Institute
Jonathan D. Smith

Jules Stein Eye Institute Executive Committee: (sitting from left to right) Drs. Gabriel Travis, Arthur Rosenbaum, Sherwin Isenberg, and Bartly Mondino; (standing from left to right) Mr. Jonathan Smith and Dr. Wayne Hubbell.
The facilities of the Jules Stein Eye Institute comprise two free-standing structures of architectural note. The five-story Jules Stein Eye Institute building, occupying 110,000 square feet, is of neo-classical design. It is the original facility, constructed in 1966. An expansion and companion building, the Doris Stein Eye Research Center, followed in 1989. It is a four-story, red granite structure, occupying 67,000 square feet, and connecting with the Jules Stein Eye Institute by way of a graceful portico. With support from Research to Prevent Blindness, a conference center complex was erected between the buildings as part of the Doris Stein Eye Research Center.

The two facilities complement each other in design and function and together accommodate the Institute’s outpatient treatment centers; clinical laboratories; a 30-bed ophthalmic outpatient unit; four operating rooms devoted exclusively to ophthalmic surgery; an optical dispensing facility; an ophthalmic photography unit; a pathology laboratory; basic science laboratories; a clinical research center; a library that provides dedicated study space for post doctoral vision science fellows and ophthalmology residents; and a variety of meeting facilities for lectures and conferences, including a 156-seat auditorium.

The buildings reflect the considerable architectural knowledge and exquisite taste of Dr. and Mrs. Jules Stein, which is evident in the Institute’s design, building materials, artwork and furnishings. Dr. and Mrs. Stein were committed to the belief that the special attention given to internal design created an uplifting environment for patients, visitors and staff alike. Of particular architectural note are the Reading Room, Seminar Room and Adam Room, all elegant meeting places containing antiques, original artwork and memorabilia from the Stein’s estate.

Patient care suites in both facilities have been carefully planned to offer comfortable, well-appointed reception and treatment rooms, along with the most up-to-date ophthalmic equipment. These areas are enlivened by original artwork, including wall murals in the pediatric waiting rooms.

The Institute’s vision research activities have benefitted enormously from the foresight of the original facility planners. A generous 20,000 square feet were devoted to basic science laboratories during the construction of the Jules Stein Eye Institute, providing highly functional space for biochemistry, biophysics, molecular biology, electrophysiology, microsurgery, cell biology, and visual physiology research. A central infrastructure supporting all of the basic science laboratories was also incorporated into this area.

Approved in 2001, and in the planning stages, is the Edie and Lew Wasserman Eye Research Center, a third building that will complete the Jules Stein Eye Institute campus. The 100,000-square-foot facility will be modeled after and situated opposite the Doris Stein Eye Research Center on Stein Plaza. Half of the space will be devoted to Institute activities and the other half to synergistic programs of the Institute and the David Geffen School of Medicine.

Dr. Jules Stein set the standard for the Institute’s design and function at the outset when he pronounced, “Our primary objective in building this Institute has been to serve the needs of medical science and medical practice...At the same time, we wished to demonstrate that all these purposes can be served within an atmosphere of grace and beauty.” This standard has been maintained through the Institute’s 42-year history and continues to be an integral component of all facilities planning.
Dear Friends,

I am pleased to share these highlights of the 2007–2008 academic year, which serve to strengthen our commitment to preserve sight and prevent blindness. This year we are proud to present four new faculty members, Sophie X. Deng, MD, PhD, JoAnn A. Giaconi, MD, David Sarraf, MD, and David S. Williams, PhD, who will contribute greatly to our clinical care and basic science activities. Three faculty were appointed new chair holders: Robert Alan Goldberg, MD, FACS, was appointed to the Karen and Frank Dabby Chair in Ophthalmology, Arthur L. Rosenbaum, MD, to the Brindell and Milton Gottlieb Chair in Pediatric Ophthalmology, and Steven D. Schwartz, MD, to the Ahmanson Chair in Ophthalmology.

During the year, faculty members were awarded special honors from Research to Prevent Blindness, including the Jules and Doris Stein Professorship and a Career Development Award. Important research grants were awarded and renewed by the National Institutes of Health, and other funding organizations.

Philanthropic gifts to the Institute were highlighted by the proposed establishment of two new endowed chairs by The Skirball Foundation and Ernest G. Herman, the creation of the Lydia Ann Rosenberg Fund for the Indigent Children’s Ophthalmic Care Program, and the Marie and Jerry Hornstein Family Endowed Macular Degeneration Research Fund. In addition, significant bequests were received including the Estate of Josephine M. Hewitt and the Mary E. Plummer Trust, as well as several generous contributions made in honor of friends and family.

We are appreciative of these opportunities afforded to faculty and students and share the belief that we will contribute to a future full of promise.

Sincerely,

Bartly J. Mondino, MD
Bradley R. Straatsma Professor of Ophthalmology
Director, Jules Stein Eye Institute
Chairman, Department of Ophthalmology, David Geffen School of Medicine at UCLA
HONORS

Each year as part of their ongoing academic pursuits, faculty members achieve notable recognition derived from their accomplishments and contributions. They give invited lectures around the world; they actively participate in influential professional and community organizations; and they serve as editors and writers for a wide range of scientific journals. In some cases special honors are bestowed. Members of the faculty were honored for their contributions to ophthalmology and visual science and three new chair holders were announced.

Karen and Frank Dabby Chair in Ophthalmology

Robert Alan Goldberg, MD, FACS, Chief of the Orbital and Ophthalmic Plastic Surgery Division at the Jules Stein Eye Institute, has been appointed to the Karen and Frank Dabby Chair in Ophthalmology. Dr. Goldberg received his medical degree from UCLA and completed his residency and fellowship training at the Institute before joining the faculty in 1989. He is committed to education and heavily involved in the academic administration of clinical teaching programs, directing a renowned fellowship program in orbital and ophthalmic plastic surgery and serving as Chairman of the Ophthalmology Residency Selection Committee. His surgical contributions include small-incision lateral orbital decompression, minimally invasive orbital tumor surgery, the Goldberg lacrimal stent, and non-incisional eyelid reconstruction techniques. In his clinical practice, which draws patients from across the United States and around the globe, he specializes in aesthetic and reconstructive orbital surgery, endonasal lacrimal surgery, endoscopic and small-incision facial surgery, and primary and secondary blepharoplasty.

This endowment to support the activities of a distinguished faculty member in the area of orbital disease was made possible by a generous contribution from Karen and Frank Dabby.

Brindell and Milton Gottlieb Chair in Pediatric Ophthalmology

Arthur L. Rosenbaum, MD, appointed to the Brindell and Milton Gottlieb Chair in Pediatric Ophthalmology, has been on the UCLA faculty for 35 years, serving as Division Chief of the Pediatric Ophthalmology and Strabismus Division since 1980. He is one of the original investigators in the area of botulinum toxin injection of extraocular muscles in the treatment of strabismus and facial spastic disorders, and continues to be involved in research projects utilizing this treatment. At present, he is working on new surgical approaches to complicated strabismus problems resulting from trauma and congenital conditions. Dr. Rosenbaum has more than 200 publications and co-authored a major textbook on strabismus. The recipient of several outstanding awards, including Lifetime Achievement from the American Academy of Ophthalmology and the Marshall M. Parks Medal from the Children’s Eye Foundation, he is recognized for his tireless work to advance the field of pediatric ophthalmology and strabismus.

Shortly before his passing in February 2006, Milton Gottlieb and his wife Brindell established the Brindell and Milton Gottlieb Chair in Pediatric Ophthalmology to support the
teaching and research activities of the Chief of the Pediatric Ophthalmology and Strabismus Division. As a testament to their admiration for Dr. Rosenbaum, they requested that after his retirement, the name of the chair be changed to Arthur L. Rosenbaum, MD, Chair in Pediatric Ophthalmology.

The Ahmanson Chair in Ophthalmology

Steven D. Schwartz, MD, Associate Professor of Ophthalmology and Chief of the Retina Division, has been appointed as the Ahmanson Chair in Ophthalmology. Dr. Schwartz received his medical degree from the University of Southern California, followed by ophthalmology residency training at UCLA’s Jules Stein Eye Institute, and a prestigious two-year fellowship at the Moorfields Eye Hospital in London, England. He joined the Institute’s faculty in 1994 and was appointed Chief of the Retina Division in 2002. Dr. Schwartz has a strong interest in improving access to specialized ophthalmic care through telemedicine and has developed innovative screening programs for diabetic retinopathy and retinopathy of prematurity. His research contributions have helped revolutionize the way many vitreoretinal conditions, such as macular degeneration and vasoproliferative disorders, including retinopathy of prematurity and diabetic eye disease, are evaluated and treated. Recent research has contributed to innovative approaches to ocular robotic surgery.

This administrative chair to support the activities of the Chief of the Retina Division was created in 2005 by The Ahmanson Foundation. The Jules Stein Eye Institute is very grateful for the late Robert H. Ahmanson’s leadership and The Ahmanson Foundation’s long-standing partnership in its mission to preserve sight and prevent blindness.

2007 Research to Prevent Blindness Award Grants

David S. Williams, PhD, Professor of Ophthalmology and Neurobiology, is the beneficiary of the 2007 Jules and Doris Stein RPB Professorship. The Stein Professorship is the premier award of Research to Prevent Blindness, providing up to $700,000 across seven years with a possible additional $150,000 in matching funds to equip lab space. The Stein Professorship is designed to foster translational research by recruiting outstanding basic scientists to conduct clinically relevant research in a department of ophthalmology.

Dr. Williams applies genetics and microscopy, including live-cell imaging, to the roles of molecular motor proteins in retinal cells. He will develop translational studies on retinal degeneration and bring a cell biological approach to the study of how visual pigment is regenerated.
RPB Career Development Awards provide $200,000 across four years to outstanding young clinical and basic scientists conducting research in departments of ophthalmology.

The awards provide a valuable tool to Ophthalmology Department Chairs who seek to recruit young ophthalmologists and vision scientists to eye research. In 2007, Raymond S. Douglas, MD, PhD, Assistant Professor of Ophthalmology, was one of eight researchers selected to receive the award. Dr. Douglas is investigating the autoimmune mechanisms of Graves disease in order to develop therapies to prevent the condition’s irreversible effects.

Ophthalmology Rankings and Recognition “Best Ophthalmology Center in the West”
The Jules Stein Eye Institute was ranked as the best eye care center in the Western United States and number five in the nation, according to a U.S. News & World Report survey of board-certified specialists from across the country. The 19th annual guide to America’s best hospitals was published in the magazine’s July 21–28, 2008, edition. The Institute continually ranks among the top ophthalmology centers in the country in this survey.

Top Ophthalmology Program
The Jules Stein Eye Institute was among the top ophthalmology programs in the United States in the 2007 survey of Best Programs by Ophthalmology Times. Published on October 15, 2007, the rankings were determined by polling Chairpersons and Residency Directors from Ophthalmology Departments across the nation. The Institute ranked fourth in the Best Overall Program category for outstanding work in teaching and developing residents, educating the public about eye care, and promoting continued research among professional staff. The Institute also received high national rankings for Best Clinical Programs, Research Programs and Residency Programs.

Top Contributor of Landmark Ophthalmology Articles
In a screening of Ophthalmology journals, articles authored by Jules Stein Eye Institute faculty were ranked among the most frequently cited. The study, published in the July 2007 issue of Archives of Ophthalmology, focused on articles that were published in major ophthalmology journals from 1975–2006. The 100 articles with the most citations were contributed by 41 institutions, and are considered classics—landmark articles with topics that have inspired clinical and basic research in the past 30 years. The Jules Stein Eye Institute was ranked among the top five leading institutions, contributing five landmark articles.
Research is a key component of the Institute’s academic mission, and a high priority for faculty who have often devoted their life’s work to furthering our knowledge of specific vision processes and eye diseases. Major research grants are routinely awarded to this effort each year. In 2007–2008, faculty members received important awards from both public and private organizations. Major new grants and grant renewals will enable faculty to substantially further ongoing vision science investigations that have shown promise. New clinical trials have direct application to some of the country’s most common ophthalmic problems.

Stem Cell Microvesicles: Potential Tools for Retinal Regeneration

A National Eye Institute grant was awarded to Debora B. Farber, PhD, DPhhc, Karl Kirchgessner Professor of Ophthalmology, to support research on stem cell microvesicles, very small membranous vesicles released by stem cells found in their extracellular environment. Important molecular signaling occurs between progenitor/stem cells and local tissue environments or niches. Conventional dogma supports the involvement of growth factors and soluble proteins in this process. Alex Yuan, MD, PhD, and other members of Dr. Farber’s laboratory are currently investigating the ability of stem cell microvesicles to fulfill this cell-to-cell communication role and to provide cues to two different progenitor cell niches in the eye. This could result in reactivation of ciliary margin and/or retinal Müller progenitor stem cells. In addition, Dr. Farber’s group will attempt to identify and characterize microvesicles in the eye’s aqueous and vitreous humors. Delivery of stem cell microvesicles to the eye may become a new treatment for a variety of ocular disorders.

Molecular Mechanism of Vitamin A Transport

Hui Sun, PhD, Assistant Professor of Physiology and Ophthalmology, received a National Eye Institute grant to study the molecular mechanism of vitamin A uptake for vision. Vitamin A is the precursor for the chromophore of photoreceptor proteins and also plays critical roles in eye development. Vitamin A deficiency is a leading cause of blindness in the world. Plasma retinol binding protein (RBP) is the principal carrier of vitamin A in the blood. Dr. Sun’s laboratory recently identified the long-sought cell-surface receptor for RBP that mediates efficient and specific transport of vitamin A into cells. Human genetics studies show that the RBP receptor is essential for the formation of the human eye. Dr. Sun’s laboratory is using a variety of techniques to study this new membrane transport system. Given the essential roles of vitamin A for both adult and developing eyes, understanding the molecular mechanism of vitamin A uptake will have a significant impact on efforts to preserve human vision.

Mechanism of Visual-Pigment Regeneration in Cone Photoreceptors

Gabriel H. Travis, MD, Charles Kenneth Feldman Professor of Ophthalmology and Co-Chief of the Vision Science Division, was awarded a National Eye Institute grant to study the role of Müller cells in visual pigment regeneration. There is evidence that the Müller cell, a cell located within the retina, participates in the regeneration of visual chromophore destined for cone photoreceptors. Cones provide high-resolution color vision in bright light, and are critical to normal sight in humans. Almost nothing is known about how Müller cells regenerate visual chromophore, and their relative contribution to this process. Dr. Travis’s laboratory is studying the biochemical mechanisms of visual-pigment regeneration. Light perception is mediated by visual pigments in the eye. For sustained vision, these pigments must be continuously regenerated. Since defects in pigment regeneration cause inherited blinding diseases, the project will help us understand how these genetic diseases arise.

Dr. Hui Sun is studying the molecular mechanism of vitamin A uptake for vision.
Academic education at the Jules Stein Eye Institute is multifaceted, ranging from teaching medical students, residents, and fellows to leading national conferences. In the course of their educational duties, faculty members mentor, counsel, lecture, and demonstrate. They are responsible for hundreds of clinical and scientific publications each year, and entrusted with developing and sharing new approaches to science and medicine that will ultimately result in improved patient care. This year we are proud to introduce four new full-time faculty members, and applaud the volunteer clinical faculty who were recognized at the Institute’s Annual Clinical and Research Seminar for their exceptional contributions to the Institute’s training programs.

New Faculty

Sophie X. Deng, MD, PhD, was successfully recruited to the Cornea and Uveitis Division as Assistant Professor of Ophthalmology. Dr. Deng received a joint medical and doctor of philosophy degree through the University of Rochester’s rigorous Medical Scientist Training Program, focusing on immunology during her doctoral dissertation research. After medical school, Dr. Deng completed her residency at the Illinois Eye and Ear Infirmary at Chicago, where she conducted a study on the use of intravitreal methotrexate in the treatment of inflammatory eye diseases that won the 2005 Beem Fisher Award, First Place, from the Chicago Ophthalmologic Society. She was awarded the prestigious Heed Fellowship in 2005. Upon completing fellowship training in corneal and external ocular diseases and refractive surgery at the Jules Stein Eye Institute, Dr. Deng became a staff physician in the Institute’s Cornea and Uveitis Division. In her new faculty position, she continues patient care and her research in ocular surface reconstruction using regenerative medicine.

Evaluation of Methods to Measure Rates of Glaucomatous Optic Nerve Damage

Several new clinical studies were funded during the year. One of the highlights was a substantial grant from Pfizer, Inc., awarded to Joseph Caprioli, MD, David May II Professor of Ophthalmology, to support a clinical study of measurement and prediction of progression rates in early and moderately advanced glaucoma. Accurate assessment of optic nerve and nerve fiber layer is important to the early detection and timely treatment of glaucoma. Research is underway to develop novel structural measures of the optic nerve and nerve fiber layer, which are sensitive and specific for early and progressive glaucomatous optic nerve damage. The goals of this study include identifying clinically implementable techniques to measure the rate of progressive damage. It is unlikely that a single structural or functional technique will be best throughout the course of the disease. Different methods may need to be applied at different stages to best measure disease progression.
JoAnn A. Giaconi, MD, is Assistant Clinical Professor of Ophthalmology in the Glaucoma Division. Dr. Giaconi received her medical degree from Columbia University in New York and did her residency in Ophthalmology at Stanford University Hospital. After completing a fellowship in Cornea and Refractive Surgery at the Bascom Palmer Eye Institute, University of Miami, she came to the Jules Stein Eye Institute, where she completed a second fellowship in Glaucoma. Dr. Giaconi provided medical and surgical care to patients in both the Institute’s University Ophthalmology Associates and Glaucoma Division for three years prior to her faculty appointment, while concurrently teaching in the Institute’s medical student education and residency programs at Harbor-UCLA Medical Center and the Department of Veterans Affairs Greater Los Angeles Healthcare System. As a faculty member of the Glaucoma Division, she continues her activities in patient care, teaching, and research into the effect of glaucoma surgery on the corneal endothelium.

David Sarraf, MD, was appointed Associate Clinical Professor of Ophthalmology in the Retinal Disorders and Ophthalmic Genetics Division. Dr. Sarraf received his medical degree from the University of Toronto in Canada. He completed an Ophthalmology research fellowship at the Jules Stein Eye Institute, followed by Ophthalmology residency training at the University of Chicago’s Pritzker School of Medicine in Illinois and a fellowship in Medical Retina and Uveitis at Moorfields Eye Hospital in London. He returned to Los Angeles in 1998 as Assistant Professor of Ophthalmology at Martin Luther King Medical Center, and as clinical staff at the Jules Stein Eye Institute. Prior to his faculty appointment, Dr. Sarraf provided medical retina services in University Ophthalmology Associates, and participated in the Institute’s medical education and residency training programs, for which he received the Faculty Teaching Award in 2006. He continues his patient care, research into age-related macular degeneration and diabetic retinopathy, and teaching activities as a full-time faculty member.

David S. Williams, PhD, has an adjunct appointment as Professor in the Departments of Ophthalmology and Neurobiology. He was awarded the prestigious Jules and Doris Stein Research to Prevent Blindness Professorship in 2007. Dr. Williams received his doctorate in neurobiology from Australian National University and completed a postdoctoral fellowship in retinal cell biology from University of California, Santa Barbara. He gained further experience as an Assistant Research Scientist at the Jules Stein Eye Institute before joining the faculty at Indiana University. He was an Adjunct Professor in the Departments of Pharmacology and Neurosciences at the University of California, San Diego, prior to his recruitment to UCLA. Dr. Williams research interests center on cell biological studies of the retina in relation to retinal function and inherited retinal disease. His current studies focus on the role of molecular motors for the function and viability of photoreceptor and retinal pigment epithelium cells—primarily their role in protein and organelle transport within these cells.
Annual Clinical and Research Seminar
The Institute’s most prestigious academic event, the Clinical and Research Seminar, was held on May 30, 2008. Sponsored by the Department of Ophthalmology Association, it provided an opportunity for discussion of emerging vision research and a celebration of teaching and faculty volunteerism. This year’s seminar featured the Thirty-Ninth Jules Stein Lecture, the Sixth Bradley R. Straatsma Lecture and the Sixth Thomas H. Pettit Lecture.

Jules Stein Lecturer
Neil R. Miller, MD, FACS
Professor of Ophthalmology, Neurology and Neurosurgery
The Johns Hopkins University School of Medicine

Bradley R. Straatsma Lecturer
Catherine Bowes Rickman, PhD
Professor of Ophthalmology and Cell Biology
Duke University School of Medicine

Thomas H. Pettit Lecturer
Stuart R. Seiff, MD
Professor of Ophthalmology Senate Emeritus
University of California, San Francisco

Volunteer and clinical faculty received awards of distinction. Bruce B. Becker, MD, received the S. Rodman Irvine Prize, which recognizes excellence among Department of Ophthalmology faculty. Senior Honor Awards were given to Andrew Henrick, MD, Morton P. Israel, MD, and Jonathan I. Macy, MD, for volunteer service to the teaching programs of UCLA and affiliated hospitals. Lynn K. Gordon, MD, PhD, and Sadiqa Stelzner, MD, received the Faculty Teaching Award for their contribution to residency education.
Established in 1966 through the remarkable insight and generous philanthropy of Dr. and Mrs. Jules Stein, the Jules Stein Eye Institute continues to advance and expand its programs and facilities. Private philanthropy provides critical support for scientific innovations, exceptional education and training, and the finest, most compassionate therapeutic approaches.

This year, over $8.2 million was raised to support the Institute’s sight-saving endeavors. This commitment and dedication from more than 700 donors allows faculty to elevate the Institute to the next level of achievement in terms of eradicating blindness and preserving vision.

Jack H. Skirball Endowed Chair in Ocular Inflammatory Disease

The Skirball Foundation made a $1-million pledge to establish the Jack H. Skirball Endowed Chair in Ocular Inflammatory Disease at UCLA’s Jules Stein Eye Institute. The creation of the Skirball Chair will enable a distinguished faculty member to engage in groundbreaking investigations and training programs in the field of inflammatory eye diseases. Jack Skirball’s entire life was one of philanthropy. Since several members of his family had eyesight problems, research in this area became a priority. Beginning with the first contribution in 1969, The Skirball Foundation has continued to fund vision science programs at the Jules Stein Eye Institute and, in particular, the endeavors of the UCLA Ocular Inflammatory Disease Center.

Ernest G. Herman Chair in Ophthalmology

The proposed Ernest G. Herman Chair in Ophthalmology will support a vision scientist or a clinician-investigator whose work emphasizes a significant area of ocular research. Ernest G. Herman has been helping people see for decades. At the Jules Stein Eye Institute, he donated to an indigent care program in Pediatric Ophthalmology and made gifts for Retina research and fellowships. Over the years, his philanthropy has touched the International Council of Ophthalmology Foundation, EyeCare America, and the Association of University Professors of Ophthalmology. He made a major contribution which helped to establish the Straatsma Award for Excellence in Resident Education through the American Academy of Ophthalmology and the Association of University Professors of Ophthalmology.

Born in 1896 in Homestead, Pennsylvania, Jack H. Skirball was ordained a rabbi in 1921. He took leave of rabbinate in 1933 and become a pioneer in film, first, as the manager of Educational Films Corporation and, then, as President of Skirball Productions, which was responsible for pictures such as Alfred Hitchcock’s Saboteur (1942) and Shadow of a Doubt (1943). In the 1950s, he began a third successful career, this time as a real estate developer. Through Mr. Skirball’s film career and relationship with the Music Corporation of America (MCA, Inc.), he met and became lifelong friends with Dr. Stein and Mr. Wasserman. The creation of the Jack H. Skirball Endowed Chair in Ocular Inflammatory Disease will serve as a lasting legacy to this enduring and influential connection, and bring Center specialists closer to their goal of improved treatment modalities and, ultimately, a cure and methods of prevention for these blinding and painful conditions.

Mr. Ernest Herman (right) with the Jules Stein Eye Institute’s Founding Director, Dr. Bradley Straatsma
Ernest Herman, who moved from Berlin to Los Angeles as a teenager, was raised in a culture of giving. He watched his father, Berlin’s largest owner of pre-World War II residential and commercial properties, donate his first restored building back to the poor to aid Berlin’s reconstruction. Mr. Herman, with his business partner Fred Keeler, built a real estate empire that included 42 J.C. Penney department stores across the nation. After helping Dr. Jules Stein with property investments in the 1960s, Mr. Herman became a patient and lifelong friend of Bradley R. Straatsma, MD, JD, the Institute’s founding director. The Jules Stein Eye Institute is deeply appreciative to Mr. Herman for his broad and influential philanthropic support of ophthalmology. The Ernest G. Herman Chair is a lasting investment in the preservation of vision for children and adults.

Lydia Ann Rosenberg Fund for the Indigent Children’s Ophthalmic Care Program
To honor her late daughter Lydia Ann, Phyllis Rosenberg made a generous contribution to establish a fund to support the Jules Stein Eye Institute’s Indigent Children’s Ophthalmic Care Program. This much-needed resource will provide surgical eye care and follow-up services for young patients with no medical insurance. Due to the increasing number of Americans, particularly children and their parents, who lack health coverage, this program fulfills a growing need for ophthalmic care in our community. Phyllis and her son Marc Rosenberg heard of the Institute’s outstanding reputation, and a program to specifically help children really appealed to them. The Jules Stein Eye Institute is incredibly grateful for the support and friendship of Phyllis and Marc. Additional funding for indigent care is a major priority for the Institute. The establishment of this fund is an important investment in the lives of children and a wonderful tribute to Lydia Ann.

Marie and Jerry Hornstein Family Endowed Macular Degeneration Research Fund
Jerry J. Hornstein and his wife Marie made a $100,000 donation to establish the Marie and Jerry Hornstein Family Endowed Macular Degeneration Research Fund. This valuable resource will provide funds in perpetuity to underwrite the age-related macular degeneration studies of Steven D. Schwartz, MD, Ahmanson Professor of Ophthalmology. Both Holocaust survivors, Mr. Hornstein and his wife settled independently in the United States after World War II, met, married, and ultimately opened the Security Contact Lens laboratory in Beverly Hills. Diagnosed with age-related macular degeneration, Mr. Hornstein was referred to the Jules Stein Eye Institute for treatment. Through emergency surgery, and thanks to Dr. Schwartz’s expertise, he gained peripheral vision. When the Hornsteins learned of the pioneering research on age-related macular degeneration underway at the Institute, they were inspired to make a contribution to advance these investigations. An endowment appealed to the couple because it will serve as a lasting legacy to their family, particularly those who perished in the concentration camps.
THANK YOU

The Jules Stein Eye Institute is grateful for the generous and steadfast support of its research, education, patient care, and outreach activities. This investment will influence Ophthalmology and related disciplines at UCLA and throughout the broader vision community. Thank you for your commitment to these important endeavors.

Major Gifts over $25,000

Jeanne A. Rappaport
Ritter Family Trust
Phyllis and Marc Rosenberg
Drs. Daljit S. and Elaine Sarkaria
The Skirball Foundation
Beth and David Shaw
Sonin Family Trust
Ruth Straatsma and Bradley R. Straatsma MD, JD
The Fran and Ray Stark Foundation
Research to Prevent Blindness, Inc.
Vision of Children, Sam and Vivian Hardage, Co-Founders
Plus numerous anonymous contributors

In Memory of

Robert Ahmanson
Mabel Chapman
Seymour Fleischer
Milton Gottlieb
Wayne N. Graves II
Cornelia Griswold
Mary Hayes
Carol Holoen
Mary Blake Larson
Nang Nou Leang
Virginia E. Leyden
Joseph P. Manson
Laughlin B. Patrick
Lydia Ann Rosenberg
Haruo Yoshino

In Honor of

William Ahmanson
Leonard Apt, MD
Richard Casey, MD
Leonard and Cindy Chapman
Anne Chinn
Devin Freeman
Marvin Meye Gladstone
John Griffin, OD, MEd
Mort and Lita Heller
John Hofbauer, MD
Kevin Miller, MD
Bartly J. Mondino, MD
Edward M. Phillips, Jr.
Arthur L. Rosenbaum, MD
Jennete Rosenfeld
Charlotte Rubin
Steven Schwartz, MD
Richard L. Silver, OD
Bradley Straatsma, MD, JD
Mary Taback
Barry Weissman, OD, PhD
Rita Zide

Faculty

Highlights
COMMUNITY OUTREACH

Much of the Jules Stein Eye Institute’s reputation springs from its innovative vision research, which translates into first-class patient care, including care for those in underserved communities. Members of the Institute’s family: JSEI Affiliates volunteers, staff, donors, faculty, fellows, and residents, have combined their talents to provide eye care to those who would normally find it difficult to afford vision screenings, contact lenses, eyeglasses, medical eye examinations, and surgery.

Indigent Children and Families Ophthalmic Care Program

The Jules Stein Eye Institute’s Indigent Children and Families Ophthalmic Care Program is a resource for children and adults with no medical insurance who require eye surgery or other specialized care in order to preserve their vision. Supported by private philanthropy, the program received an additional boost in 2003 when the Annenberg Foundation made a $1 million pledge to support its continuation and expansion. Patients are referred to the program by faculty, fellows, and residents working at the Institute, UCLA-affiliated medical centers, UCLA Mobile Eye Clinic and Venice Family Clinic. Once the patients’ medical and financial screenings are completed, pre-operative tests are conducted, required surgeries are scheduled, and post-operative care is provided. In addition to free surgical services, the program assists parents with the purchase of pediatric contact lenses for children under the age of five who suffer from aphakia (absence of the lens of the eye) due to congenital cataract.

UCLA Mobile Eye Clinic

The UCLA Mobile Eye Clinic provides general eye care to approximately 4,000 adults and children annually throughout Southern California, traveling to schools, shelters, community health and senior citizen centers, health fairs, and organizations that assist homeless and low-income families. The Clinic, founded in 1975 with philanthropic support from The Karl Kirchgessner Foundation, currently uses a 39-foot bus specially equipped with eye examination equipment. The staff of trained ophthalmic personnel includes Lawrence M. Hopp, MD, Eddy Nguyen, MD, and Andrew Young, MD, as well as JSEI residents, and is led by Anne L. Coleman, MD, PhD. Vision services offered include ophthalmic examination and refraction, diagnoses of potential or existing eye disorders, treatment of some ocular diseases, and appropriate referral of patients who need additional services or surgery. Eyeglass vouchers are available for children in need through the generosity of the Karl Kirchgessner Foundation, and Our Lady of Angels Cathedral provides prescription eyeglasses for adults seen on the Mobile Eye Clinic in downtown Los Angeles.

JSEI Affiliates Programs—A Year in Review

Since its inception, the Jules Stein Eye Institute Affiliates have provided extensive outreach programs made possible through funding from annual membership dues and philanthropic support from program donors. Affiliates programs support vision research, vision education and vision rehabilitation for the underserved of the Los Angeles community.

Preschool Vision Screening (PSVS) Program

The Preschool Vision Screening Program began in 1999 with support from a private donor. This program meets a growing need for early intervention for children who have undetected refractive errors or eye muscle problems. Trained lay volunteers, under the supervision of two retired optometrists, visit local preschools in Los Angeles County to screen young children for simple refractive errors and eye muscle problems. In 2008, the Institute continued its relationship for a second year with the Santa Monica-Malibu Head Start Program, allowing volunteers to screen low-income children participating in this program that could not otherwise afford a vision exam.

2007–2008 Program Statistics

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of children screened</td>
<td>500</td>
</tr>
<tr>
<td>Average number screened per session</td>
<td>30</td>
</tr>
<tr>
<td>Number of children referred to a physician for further examination</td>
<td>30</td>
</tr>
<tr>
<td>Number of participating volunteers</td>
<td>20, including two retired optometrists</td>
</tr>
</tbody>
</table>
Vision IN-School Program
Vision IN-School is a vision education program designed for fourth-to-sixth-grade students, based on curriculum provided by the National Eye Institute. Offered to schools throughout the Greater Los Angeles area, the program began in 1996 and is a fun, interactive curriculum that covers anatomy of the eye, eye safety, and optical illusions. Volunteers visited 10 different schools this past year, presenting to 12 different classrooms. The program emphasizes eye safety and injury prevention in hopes of inspiring children to protect their precious gift of vision.

2007–2008 Program Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of presentations</td>
<td>12</td>
</tr>
<tr>
<td>Number of participating children</td>
<td>349</td>
</tr>
<tr>
<td>Number of participating volunteers</td>
<td>20</td>
</tr>
</tbody>
</table>

Shared Vision Program
The Shared Vision Program collects and recycles donated eyeglasses for those in need. Most of the glasses are donated to clinic missions in Africa, Mexico, and other developing nations. Many are distributed to Jules Stein Eye Institute faculty and staff members who travel abroad to conduct specialized clinics, and some, especially pediatric frames, are utilized by the Institute’s own Mobile Eye Clinic that conducts vision screenings in low-income areas throughout Southern California.

2007–2008 Program Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of eyeglasses collected</td>
<td>10,500</td>
</tr>
<tr>
<td>Organizations that received eyeglass donations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US Doctors for Africa</td>
</tr>
<tr>
<td></td>
<td>Fellowship for International Service and Health (FISH)</td>
</tr>
<tr>
<td></td>
<td>Lions Club International</td>
</tr>
<tr>
<td></td>
<td>Venice Family Clinic</td>
</tr>
<tr>
<td></td>
<td>Various additional International Clinic Missions</td>
</tr>
</tbody>
</table>

MagniVision
MagniVision volunteers support the Institute’s Vision Rehabilitation Center by training low-vision patients on the use of magnification devices and various new vision aids that allow them the ability to maintain their independence and improve their quality of life. Volunteers work in the clinic on a year-round basis to provide assistance to Center staff and patients. Aside from volunteer support, the JSEI Affiliates provide financial assistance to support the general needs of the Center and to purchase new assistive and magnification devices to keep the Lending Library’s inventory current.

Make Surgery Bearable
The Make Surgery Bearable program provides plush “Dr Teddy MD” teddy bears to each and every pediatric patient undergoing eye surgery at the Jules Stein Eye Institute. They are small tokens but go a long way to help children feel secure during a scary time. Funds for the teddy bears are raised in a variety of ways, including the Affiliates’ annual holiday and Mother’s Day campaign drives. Sponsorships are also available year-round to honor a loved one or celebrate a special occasion.

Number of teddy bears sponsored during 2007–2008 | 750
Anthony J. Aldave, MD

Associate Professor of Ophthalmology
Director of the Cornea Service
Director of the Cornea and Refractive Surgery Fellowship
Member of the Jules Stein Eye Institute

Discovering the Genetic Basis of the Corneal Dystrophies

The corneal genetics laboratory, under Dr. Aldave’s direction, is involved in the search for the genetic basis of inherited corneal disorders such as keratoconus, posterior polymorphous corneal dystrophy, and posterior amorphous corneal dystrophy. Additionally, the laboratory is investigating the utility of RNA interference in the management of the TGFBI dystrophies.

PUBLIC SERVICE

Member, American Academy of Ophthalmology Knowledge Base Development Project Cornea and External Disease Panel
Member, American Academy of Ophthalmology Subspecialty Day Committee
Member, American Academy of Ophthalmology Ethics Committee
Associate Examiner, American Board of Ophthalmology
Reviewer for many scientific journals

HONORS

Visiting Professor/Invited Grand Rounds Speaker at Northwestern University in Chicago, Illinois
Keynote Speaker at the 66th Annual Conference of the All India Ophthalmological Society in Bangalore, India
Visiting Professor at King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia
Presented the Gaynelle Robertson Memorial Lectureship in Ophthalmology at the University of Texas Medical Branch in Galveston, Texas

RESEARCH GRANTS

NEI/NIH: Cloning the Gene for Posterior Polymorphous Corneal Dystrophy, 9/30/05–8/31/10
Case Western University/NIH: A Multicenter Study to Map Genes for Fuchs Dystrophy, 2/1/06–8/31/08
National Keratoconus Foundation: Identification of Differentially Expressed Genes in Keratoconus, 9/1/06–8/31/07
Stein Oppenheimer Endowment Award: Identification of the Genetic Basis of Keratoconus Using a Candidate Gene Approach Incorporating Gene Expression and Linkage Analysis Data, 2/13/07–2/12/08
Oppenheimer Family Foundation Center For Prevention of Eye Disease Program: RNA Interference Targeting of the TGFBI Gene Transcript in Human Corneal Epithelial Cells as a Method to Inhibit Pathologic TGFBI Protein Deposition in the Corneal Dystrophies, 2/15/08–2/14/09
Ophthalmic Innovations International, Inc.: To Evaluate the Safety and Effectiveness of the Phakic 6 H2 Refractive Anterior Chamber Lens, 7/3/03–7/2/07
Ischemic and Inflammatory Diseases of the Optic Nerve

Dr. Arnold directs a neuro-ophthalmology research program concerned with diseases of the optic nerve. The overall goals of the program are the development of new techniques for imaging the optic nerve and its blood supply; an improved understanding and classification of ischemic and inflammatory optic nerve diseases; and the development and evaluation of new therapeutic modalities for these diseases.

Dr. Arnold was a principal investigator in the National Eye Institute-sponsored clinical study of optic nerve sheath decompression surgery for nonarteritic anterior ischemic optic neuropathy, and he was on the study's Visual Field Data Analysis Committee. He is a primary consultant for an international multicenter study of risk factors for nonarteritic anterior ischemic optic neuropathy.

Ongoing additional research studies include clinical characteristics of ischemic optic neuropathy in young patients; improved differentiation of arteritic from nonarteritic anterior ischemic optic neuropathy; identification of ischemic aspects of other rare optic neuropathies, such as diabetic papillopathy, uremic optic neuropathy, and chemotherapy-induced optic neuropathy after bone marrow transplantation; and classification of unusual optic neuropathies, such as ethambutol-induced optic neuropathy and focal congenital optic nerve hypoplasia. A longitudinal study of optic nerve sheath meningiomas treated with conformal radiation is in development.

PUBLIC SERVICE

Faculty, Stanford/Bay Area Basic Science Course in Neuro-Ophthalmology

Reviewer for many scientific journals

HONORS

President of the North American Neuro-Ophthalmology Society

Director of the American Board of Ophthalmology

Co-Director and Invited Guest Lecturer at the Symposium on Residency Education and Neuro-Ophthalmology at the World Ophthalmology Congress in Hong Kong, China

Chaired the Curso de Directores de Residencias Oftalmologicas (Residency Program Directors Course) in Buenos Aires, Argentina

Co-Chair at the International Neuro-Ophthalmology Society Meeting in Napa, California

Invited Guest Lecturer at the International Council of Ophthalmology Program Directors Course in Florianopolis, Brazil

Presented the Koplowitz Lecture at the Current Concepts of Ophthalmology Meeting at the Wilmer Eye Institute in Baltimore, Maryland

Invited Lecturer at the Saudi Ophthalmology Congress at King Fahd Cultural Center in Riyadh, Saudi Arabia

Primary Guest Lecturer in Neuro-Ophthalmology at the Argentine Congress of Ophthalmology in Buenos Aires, Argentina
Richard S. Baker, MD
Associate Professor of Ophthalmology
Dean of the College of Medicine, Charles Drew University of Medicine and Science
Associate Dean of the David Geffen School of Medicine, UCLA
Member of the Jules Stein Eye Institute

Ophthalmic Epidemiology and Health Services Research
Dr. Baker’s primary areas of research interest are in the fields of ophthalmic epidemiology, health services research, and health information technology including telemedicine. Current projects in ophthalmic epidemiology include statistical analysis of national and statewide databases to produce definitive population-based estimates of the distribution and the determinants of major ophthalmic diseases and their treatments.

As Director of the Charles Drew Center for Health Services Research, Dr. Baker works closely with collaborators at the Jules Stein Eye Institute and across UCLA on multiple projects related to improving access to care, optimizing quality of care, and the elimination of health disparities in diverse and underserved populations.

PUBLIC SERVICE
Co-Founder and Board Member, Los Angeles Eye Institute
Commissioner, Blue Ribbon Commission on Los Angeles Grocery Industry and Community Health
Member, South Los Angeles Health Care Leadership Roundtable
Reviewer for multiple NIH and AHRQ Special Emphasis Panels
Reviewer for many scientific journals

HONORS
Recipient of the California State Assembly Certificate of Recognition

RESEARCH GRANTS
Agency for Health Care Research and Quality: Drew MRISP Center for Health Services Research, 9/1/04–8/31/08
National Cancer Institute/Morehouse School of Medicine: National Black Leadership Initiative on Cancer Community Networks Program, 9/1/06–8/31/09
Molecular Biology of Vision

Dr. Bhat’s laboratory conducts research in the regulation of gene expressions during differentiation and development of the vertebrate eye. This involves isolation and characterization of genes and gene products; identification of the attendant regulatory elements; and study of the regulatory controls in both in vivo and in vitro systems with manipulated gene sequences.

Two areas of research are currently under investigation that will provide insight into molecular mechanisms that developmentally predispose the eye to hereditary dysfunctions such as myopia, cataracts, and retinal diseases. One area of study is the developmental and tissue-specific control of the heat shock promoter of the αB-crystallin gene and the biological function of its gene product. This involves a focus on HSF4, which Dr. Bhat recently reported to be the only heat shock transcription factor of the developing ocular lens. Another area of study is control of the growth of the eye globe with special emphasis on neurogenesis (generation of neurons) in the retina.

PUBLIC SERVICE

Member, National Advisory Eye Council, National Eye Institute, National Institutes of Health

Member, University of California, Council on Research

Member, Scientific Advisory Board for the Eye Research Institute of Oakland University

Executive Editor, Experimental Eye Research

Editor, Molecular Vision

Reviewer for many scientific journals

HONORS

Keynote Speaker at the XXXIII Annual Conference of the Indian Society of Human Genetics and International Symposium on Genetics Revisited: The Genomics and Proteomics Advantage in Visakhapatnam, India

RESEARCH GRANTS

National Eye Institute: Gene Expressions in Normal and Cataractous Lens, 6/1/06–5/31/11
Dean Bok, PhD

Dolly Green Professor of Ophthalmology
Professor of Neurobiology
Member of the Jules Stein Eye Institute
Member of the Brain Research Institute

Cell and Molecular Biology of the Retina

Dr. Bok’s research interests involve the cell and molecular biology of the normal and diseased retina. In one research area, he is identifying and characterizing genes specific to retinal pigment epithelium (RPE) and exploring interactions that take place between RPE and retinal photoreceptors. The RPE performs a multitude of functions in the retina, including the transport of nutrients, ions, and fluid; the uptake and processing of vitamin A; and the daily removal of outer segment disc membranes that have been discarded by the photoreceptors. A second area of research involves the study of animal models for human retinitis pigmentosa and macular degeneration.

Dr. Bok is using the techniques of cell and molecular biology to determine the proteins responsible for photoreceptor degeneration. One of the proteins under study in mice and humans is rds/peripherin. Because of a gene mutation, this protein is defective in a strain of mice called rds. As a result, the photoreceptors fail to form their light-sensitive organelles and eventually die. Dr. Bok and his collaborators have prevented blindness in these mice by injecting an artificial gene for rds/peripherin that performs normally. They are currently placing human rds/peripherin mutations into mice in order to study the mechanisms that cause photoreceptor death. Attempts are being made to slow the process of photoreceptor degeneration by delivery of neurotrophic factors into the retina by nonpathogenic viruses. Finally, with new information regarding the genetics of age-related macular degeneration, Dr. Bok and collaborators are studying mechanisms whereby the alternative complement pathway of the immune system contributes to this disease.

PUBLIC SERVICE

Member, Scientific Advisory Board: Bank of America/Giannini Foundation, the E. Matilda Ziegler Foundation for the Blind, The Karl Kirchgessner Foundation, the Macula Vision Research Foundation, Research to Prevent Blindness, and the Ruth and Milton Steinbach Fund, Inc.

External Advisory Board, Center of Biomedical Research Excellence, University of Oklahoma Health Sciences Center and BRTT grant, Cole Eye Institute

Editorial Board Member, International Review of Cytology

Reviewer for many scientific journals

HONORS

Honorary Chair for the Foundation Fighting Blindness, Vision Walk

RESEARCH GRANTS

Macula Vision Research Foundation: Identification and Cellular Localization of Gene Products that Affect Photoreceptor Survival in Inherited Retinal Degeneration, 4/1/08–3/31/09

Foundation Fighting Blindness: Center Grant (Center Director, with other investigators), 7/1/05–6/30/10

National Eye Institute: Pathobiology of Inherited Retinal Degenerations, 12/1/01–11/30/07

Retina Research Foundation: Paul Kayser International Award in Retina Research, 12/1/06–11/30/07

Sarkaria Family Foundation: Clinical Studies of Stargardt Disease and Development of a New Mouse Model of Stargardt Disease (with other investigators), 7/1/07–6/30/11

National Eye Institute: Development of Complement Modulating Therapeutics for AMD (with other investigators), 8/1/06–7/31/11

National Eye Institute: RDS Mutations; Gene Therapy for ADRP, Macular Degeneration and Pattern Dystrophy (with other investigators), 9/1/07–8/31/11
Dr. Caprioli’s long-term objective in his clinical and basic research is to identify those individuals at greatest risk for visual loss and to implement new treatment strategies to prevent blindness. Currently, the only tool that physicians have to treat glaucoma is reduction of intraocular pressure. This treatment does not prevent visual loss in a substantial proportion of patients whose damage progresses quickly. The development of effective neuroprotective avenues of treatment will be a hallmark advance to eliminate blindness from this disease.

Evaluation of Methods to Measure Rates of Glaucomatous Optic Nerve Damage

Accurate assessment of optic nerve and nerve fiber layer is important to the early detection and timely treatment of glaucoma. Studies are underway to develop novel structural measures of the optic nerve and nerve fiber layer, which are sensitive and specific for early and progressive glaucomatous optic nerve damage. The goals of this work include identifying clinically implementable techniques to measure the rate of progressive damage. It is unlikely that a single structural or functional technique will be best throughout the course of the disease, and that different methods will need to be applied at different stages to best measure disease progression.

Molecular Mechanisms of Retinal Ganglion Cell Damage and Neuroprotective Approaches to Treatment

Basic science research under Dr. Caprioli’s direction involves the mechanisms of glaucomatous optic nerve damage. The stress protein response in a glaucoma model is being intensively studied. An important goal in this research is to identify neuroprotective drugs that prevent the death of retinal ganglion cells in mammalian models of glaucoma, and to apply these findings to clinical trials of human glaucoma.

PUBLIC SERVICE

Chair, American Academy of Ophthalmology, Practice Improvement Task Force
Clinical Volunteer, Venice Family Clinic
Reviewer for many ophthalmic journals

HONORS

Presented the H. Saul Sugar Lecture in Glaucoma in Dearborn, Michigan
Invited Distinguished Keynote Speaker at the State Institute of Eye Diseases of the Russian Academy of Medical Sciences in Moscow, Russia

RESEARCH GRANTS

Allergan: Oral Memantine Study, 8/31/99–7/8/07
Allergan: A 48-Month, Multicenter, Randomized, Double-Blinded, Placebo-Controlled Clinical Study, 8/31/99–7/8/07
Pfizer: Retrospective, Long-Term, Longitudinal Analysis of HRT Image Data in Patients with Ocular Hypertension, 4/7/06–4/7/11
Pfizer: Measurement and Prediction of Progression Rates in Early and Moderately Advanced Glaucoma, 9/19/07–9/30/08
Richard Casey, MD

Associate Professor of Clinical Ophthalmology
Member of the Jules Stein Eye Institute
Lead Physician of the Martin Luther King, Jr. Multi-Service Ambulatory Care Center
Faculty of Charles Drew University of Medicine and Science

Cornea External Disease and Health Services/Health Access

Dr. Casey’s primary research interest involves improving access to health care in underserved communities both in the United States and throughout the world. He is working to assess the unmet needs in vision health and to develop innovative strategies to meet these deficits.

PUBLIC SERVICE

Co-Founder/Chairman, The Los Angeles Eye Institute
President, Willowbrook Medical Center Project
President, The Los Angeles Ophthalmology Medical Group
Glaucoma, Cataract, and Age-Related Macular Degeneration

Dr. Coleman’s research is directed toward the diagnosis, treatment, and societal impact of glaucoma, cataracts, and age-related macular degeneration (AMD), including the study of lifestyle limitations imposed on patients with these kinds of eye diseases. Clinical projects include studies on dietary vitamin intake and open angle glaucoma, the effects of yoga on glaucoma, and glaucomatous visual field and optic nerve progression.

PUBLIC SERVICE

Trustee-at-Large, American Academy of Ophthalmology
Assistant Secretary for Quality of Care, American Academy of Ophthalmology
Planning Committee Member, National Eye Health Education Program, National Health Institute
Member, University of Arizona Review Committee
Executive Editor, American Journal of Ophthalmology

HONORS

Clinician Scientist Lecturer for the American Glaucoma Society
Member of the American Ophthalmological Society

RESEARCH GRANTS

National Eye Institute: Ocular Hypertension Treatment Study (OHTS), 1/1/00–12/31/08
National Eye Institute: Incidence of Late Macular Degeneration in Older Women, 8/15/02–7/31/08
American Health Assistance Foundation: Single Nucleotide Polymorphisms and AMD in Older Women, 4/1/07–3/31/09
Friends of the Congressional Glaucoma Caucus Foundation: Student Sight Savers Program, 12/21/04–11/30/10
Alcon Laboratories: Alcon Funding, 12/1/07–11/31/09
Motility and Vision

Dr. Demer studies the role of the brain and extraocular muscles in the control of eye movements and visual perception. He is directing a National Eye Institute research project aimed at developing an understanding of the role of orbital connective tissues in the development of binocular coordination disorders, such as strabismus, and is developing new technologies for magnetic resonance imaging of extraocular muscles and nerves. This research has contributed to the knowledge of the functional anatomy of extraocular muscles and connective tissues, allowing development of new types of surgeries. The project also involves study of an animal model of strabismus, expressing genes which cause binocular misalignment in humans.

Dr. Demer is also conducting a National Eye Institute study on magnetic resonance imaging of the extraocular muscles, which may clarify the phenotypes and mechanisms of congenital cranial dysinnervation syndromes. Patients with these syndromes have severe forms of strabismus. A project funded by Roy and Lillian Disney through Research to Prevent Blindness investigates optic nerve size, to determine if subtle optic nerve disorders are associated with amblyopia, a common cause of visual loss in children.

PUBLIC SERVICE

Editorial Board Member, Investigative Ophthalmology and Visual Science

Editorial Board Member, Strabismus

Grant Reviewer, United States Public Health Service and United States Veterans Administration

Reviewer for many scientific journals

HONORS

Presented the Angeline Parks Lecture and was a Visiting Professor at Children’s National Medical Center in Washington, D.C.

Visiting Professor at Case Western Reserve University in Cleveland, Ohio

RESEARCH GRANTS

National Eye Institute: Biomechanical Analysis in Strabismus Surgery, 5/1/06–4/30/11

National Eye Institute/Children’s Hospital Boston: Genetic and Anatomic Basis of the Fibrosis Syndrome, 4/1/07–11/31/09

Research to Prevent Blindness: Walt and Lilly Disney Award for Amblyopia Research, 7/1/04–6/30/09

National Institute on Deafness and Communicative Diseases: New Tests of Vestibular Function, 8/1/02–7/31/07
Dr. Deng’s research is focused on improving the current treatment for patients with limbal stem cell deficiency. To achieve this goal, her laboratory takes two different approaches. The first approach is to study the microenvironment/niche of the limbal stem cells to elucidate those factors that govern the fate of limbal stem cells. Unique gene expression in the limbus using an oligonucleotide microarray technique has revealed potential molecular components of the limbal stem cell niche. The functions of the genes in the corneal epithelial cells are being investigated in human limbal cell cultures. A transgenic mouse model is being used to study the homeostasis of the corneal epithelial cells in normal and wound healing condition. Also under investigation is the role of Wnt signaling in the differentiation and proliferation of limbal stem cells. The second approach is to achieve patient specific therapy by regenerating autologous limbal stem cells from various types of pluripotent stem cells through ex vivo transdifferentiation. Multiple types of pluripotent stem cells will be tested for their ability to transdifferentiate into corneal epithelial cells.
Characterizing the Molecular Events Occurring in Graves Disease

Dr. Douglas’s research laboratory is undertaking studies to help identify important therapeutic targets for modifying the clinical behavior of Graves disease and limiting the morbidity associated with it.

The specific aims for this project are to identify the genes that participate in thyroid overfunction and orbital connective tissue remodeling; to characterize the proteins that are produced abnormally in the orbit and thyroid in Graves disease; to determine the signaling events that occur in Graves disease; and to identify therapeutic targets for the thyroid, glandular, and orbital manifestations of Graves disease.

RESEARCH GRANTS

- Research to Prevent Blindness: RPB Career Development Award, 7/1/07–6/30/11
- National Eye Institute: Immune Activation of Fibroblasts, 10/1/04–9/1/09
- Los Angeles Biomedical Research Institute/NIH: Immune Activation of Fibroblasts, 9/1/06–8/31/07
Dr. Fain’s primary interest is in the physiology of photoreceptors in the vertebrate eye. He is particularly interested in the biophysical nature of the electric signal and the role of calcium in its production. Such information will help investigators understand how the eye works and may provide insight into the mechanisms of retinal degeneration.
Debora B. Farber, PhD, DPhhc

Karl Kirchgessner Professor of Ophthalmology
Member of the Jules Stein Eye Institute
Member of the Brain Research Institute
Member of the Molecular Biology Institute

Retinal Biochemistry, Molecular Biology, and Genetics of Retinal Degenerations

Dr. Farber’s research focuses on the isolation and characterization of genes involved in inherited retinal diseases. Her team has cloned several genes encoding enzymes and proteins that play a key role in vision, including the β-PDE gene, that leads to blindness in mice and dogs, and causes one type of autosomal recessive retinitis pigmentosa (arRP) (utilizing gene therapy, they rescued mice photoreceptors by delivering the normal gene to these cells); RP1 (responsible for a type of autosomal dominant RP); the gene causing disease in the rd7 mouse—a model for Enhanced S-Cone Syndrome; the β-transducin gene, disrupted in the Rd4 mouse, another model of retinal disease; and the mouse homologue of the gene causing X-linked juvenile retinochisis (Xlrs1).

Dr. Farber’s group is also working on the mechanisms that regulate transcription and expression of retinal genes. They found that the transcription factor SP4 controls the activity of the β-PDE promoter and that mutation in both SP4 and β-transducin cause digenic arRP and cone-rod dystrophy (arCRD). Other projects include the identification of cone genes (mutations in 7R and ZBED4 cause arRP and arCRD); the characterization of animal models of ocular albinism, which causes permanent visual impairment; and the study of microvesicles released by mouse embryonic stem cells that may transfer RNA or protein to other cells, in vitro.

PUBLIC SERVICE

Scientific Advisory Board Member: the Foundation Fighting Blindness; the Center for Vision Research, State University of New York at Syracuse; The Vision of Children Foundation; and an Advisor for The Canadian Retinitis Pigmentosa Foundation
Editorial Board Member: Molecular Vision; The Open Ophthalmology Journal; The Journal of Ocular Biology, Diseases, and Informatics; and Stem Cells and Cloning Advances and Applications

HONORS

Recipient of “Visitante Distinguida,” Universidad Nacional de Cordoba, and Member of the National Academy of Medical Sciences of Cordoba in Republica Argentina

RESEARCH GRANTS

National Eye Institute: Molecular Mechanisms in Retinal Degenerations, 7/1/06–6/30/11
Foundation Fighting Blindness: Center Grant (with other investigators), 7/1/05–6/30/10
Vision of Children Foundation: Studies in Ocular Albinism, 7/1/05–6/30/08
Vision of Children Foundation: Does a Constitutively Active Gαi3 Protein Rescue the Oa1 -/- Mouse Phenotype?, 4/1/08–3/31/09
Hope for Vision (with Novrouz Akhmedov, PhD): Novel Locus for Retinitis Pigmentosa Associated with the Recently Identified 7R Protein, 4/1/08–3/31/09
Hope for Vision: Studies on the Ability of Stem Cell Microvesicles to Activate Quiescent Ciliary Margin Stem Cells and Enhance Their Proliferation, 9/1/07–8/31/08
Glaucoma

Dr. Giaconi’s primary research interests include how lifestyle impacts glaucoma, and the effect of glaucoma surgery on the cornea and vision. Using a database of women from the Multicenter Study of Osteoporotic Fractures, Dr. Giaconi is studying the association between glaucoma and the diet with Anne L. Coleman, MD, PhD. She is also enrolling patients in a clinical study to measure the effect of various glaucoma surgeries on the corneal endothelium, the layer of cells that keeps the cornea clear.

PUBLIC SERVICE

Member, Glaucoma Panel, American Academy of Ophthalmology Knowledge Base Development Project
Member, Women in Ophthalmology Board of Directors
Program Chair, Los Angeles Society of Ophthalmology
Reviewer for many scientific journals

HONORS

Recipient of the American Glaucoma Society’s Clinician-Scientist Award

RESEARCH GRANTS

American Glaucoma Society: Nutritional Associations with Glaucoma/African American Women, 2/1/06–12/31/07
Ben J. Glasgow, MD

Edith and Lew Wasserman Professor of Ophthalmology
Professor of Pathology and Laboratory Medicine
Chief of the Ophthalmic Pathology Division
Member of the Jules Stein Eye Institute

Ophthalmic Pathology

Dr. Glasgow’s research interests are primarily in the field of ophthalmic pathology. His major focus is the role of human lacrimal gland proteins in the protection and maintenance of the eye. His laboratory is investigating the structure-function relationship of tear lipocalin, the principal lipid carrier protein of tears. Currently, the laboratory has developed a technique called site-directed tryptophan fluorescence to probe and report information regarding molecular motion and solution structure. By studying the molecular mechanisms of tear proteins, Dr. Glasgow is seeking to learn the normal functions of tear lipocalin and its role in maintaining the health of the ocular surface and in the prevention of dry eye diseases. It is hoped that this research will lead to new treatments for dry eye and have broad application to numerous other members of this protein family that transport small, insoluble molecules through the body.

PUBLIC SERVICE

Member, National Institutes of Health, Anterior Eye Diseases Study Section
Reviewer for many scientific journals

RESEARCH GRANTS

National Eye Institute: Proteins in Molecular Mechanisms of Tear Film Formation, 6/30/06–7/1/11
Diseases and Therapy of the Eyelid and Orbit

Research into the various surgical approaches to Graves orbitopathy (thyroid eye disease) has resulted in new techniques that include less invasive small incision surgical approaches. In addition, detailed clinical information gathered from patients with Graves orbitopathy is recorded in a shared database as a way to better understand the natural history and response to treatment of this multifaceted disease, which is a cause of significant visual loss and discomfort. Dr. Goldberg and Raymond S. Douglas MD, PhD, are also investigating the underlying causes of thyroid-related orbitopathy in collaborative research with Terry J. Smith, MD, in the Division of Molecular Medicine at Harbor-UCLA Medical Center. The goal of this research is to develop better tests to monitor disease activity, as well as new treatments to address the basic cause of the disease.

Research into orbital and eyelid anatomy, currently in progress, is resulting in improved techniques and approaches to deep orbital disease. Included is the use of high-resolution magnetic resonance imaging to evaluate motility problems following trauma and orbital surgery, and three-dimensional analysis of orbital anatomy. Improved understanding of eyelid and orbital anatomy is the basis for developing improved surgical techniques. Instrumentation and devices that allow less invasive surgical approaches, such as the hydrogel lacrimal stent, are being developed and studied.

Ongoing research related to the reconstruction of the ocular surface in severe trauma or cicatrizizing disease includes the design and evaluation of improved instrumentation and surgery techniques. It is hoped that new treatment approaches can solve problems caused when damaged eyelids, conjunctiva, and support tissues fail to provide a supportive environment for the cornea.

PUBLIC SERVICE

Assistant Vice President Professional Education, California Academy of Ophthalmology
Fellow and Member, Awards Committee, American Society of Ophthalmic Plastic and Reconstructive Surgeons
Fellowship Program Director, American Academy of Cosmetic Surgery
Editorial Board Member: Archives of Ophthalmology, Ophthalmic Plastic and Reconstructive Surgery, and Archives of Facial Plastic Surgery
Section Editor, American Academy of Ophthalmology, O.N.E. Network

HONORS

Elected to the Editorial Board of the American Academy of Ophthalmology, Ophthalmic News and Education
Featured Invited Speaker at the Turkish Society of Ophthalmology in Antalya, Turkey
Visiting Professor and Featured Speaker at the LV Prasad Eye Institute in Hyderabad, India
Presented the King Khaled Memorial Lecture at King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia
Featured Invited Speaker at the Asia Pacific Ophthalmic Plastic Surgery Association Meeting in Seoul, Korea

RESEARCH GRANTS

Medicis Pharmaceuticals Corp.: A Phase III, Randomized, Placebo-Controlled, Multicenter, Double-Blind Study of Reloxin, 1/22/07–1/22/09
Vitreoretinal Diseases

Dr. Gonzales is primarily interested in retinal disease with abnormal angiogenesis such as age-related macular degeneration (AMD), diabetic retinopathy, and retinopathy of prematurity (ROP). She is the principal investigator in many clinical trials evaluating a new pharmacologic treatment for exudative macular degeneration. This treatment involves an intravitreal injection of an agent that blocks vascular endothelial growth factor (VEGF). This growth factor is known to play an important role in abnormal blood vessel growth in AMD. VEGF is also known to increase vascular permeability in patients with diabetic retinopathy and other retinal vascular diseases leading to macular edema. Dr. Gonzales is the principal investigator in other clinical trials in which an anti-VEGF agent is injected into the eye in patients with macular edema secondary to diabetic retinopathy and central retinal vein occlusion. These treatments are also being considered for ROP, in an upcoming clinical trial.

RESEARCH GRANTS

Opko Health: A Phase III, Randomized DM, Parallel Assignment Study of Intravitreal Bevasiranib Sodium, 3/13/08–3/14/10
Opthotech Corp.: A Phase I, Trial to Establish the Safety, Tolerability, and Pharmacokinetic Profile of Intravitreous Injections, 2/25/08–2/26/10
Palmetto Retina Center: Open Label Macugen for the Treatment of Macular Edema Secondary to Branch Retinal Vein Occlusion, 11/3/06–10/2/08
EyeTech Pharmaceuticals, Inc.: Intravitreal Injections for Patients with Exudative (EOP1004) Age-Related Macular Degeneration, 10/16/01–4/1/08
EyeTech Pharmaceuticals, Inc.: Macugen with Sham Photodynamic Therapy (EOP1012), 7/28/05–4/30/08
EyeTech Pharmaceuticals, Inc.: A Phase IV, Open Label, Multicenter Trial of Maintenance Intravitreous Injections (EOP1023), 9/7/06–8/31/08
EyeTech Pharmaceuticals, Inc.: Pegaptanib Sodium (Macugen) for Macular Edema (EOP1013), 2/3/06–2/2/10
Oxigene, Inc.: Combretastatin A4 Phosphate for Subfoveal Choroidal Neovascularization, 11/1/05–3/31/08
NEI/JAEB Center for Health Research: The Diabetic Retinopathy Clinical Research Network, 6/1/03–12/31/09
Retinal Cell Biology and Inflammatory Diseases

Dr. Gordon’s laboratory is involved in three areas of research. One project identifies that the cell line ARPE-19 uses the FAK signal transduction pathway to accomplish contraction of collagen gels, an in vitro correlate of proliferative vitreoretinopathy (PVR). PVR is observed in up to 10% of individuals following repair of retinal detachments and may lead to recurrent tractional retinal detachment and result in loss of vision. Modulation of gel contraction is accomplished by altering the expression levels of EMP2, and this modulation is mediated through a direct interaction between EMP2 and FAK, resulting in FAK activation.

In a second project, Dr. Gordon’s group, collaborating with Kathleen A. Kelly, PhD, in UCLA’s Department of Pathology and Laboratory Medicine, proposes that interference with EMP2 would be a potential new target for therapeutic development in prevention of chlamydial infections. Chlamydia produces trachoma, the most common cause of preventable blindness in the world. In both ocular and genitourinary tract cell lines they identified EMP2 as a new host receptor protein, which is important for chlamydial attachment and subsequent infection. They have recently developed a recombinant antibody against EMP2 that abrogates both infection and the resultant inflammatory host response.

The final area of interest of Dr. Gordon’s group is the developmental role of programmed death 1 (PD-1), a molecule that is known to play an important role in immune regulation in retinal formation. Programmed cell death 1 (PD-1) has a major function as a negative regulator in the immune system. Although previous studies identified PD-1 expression in the lymphoid system, Dr. Gordon and her colleagues have recently identified its expression in neuronal cells of the retina. This observation raises the possibility of a developmental role for PD-1 in maturation of the ganglion cell layer and retinal remodeling process as well as a possible role for PD-1 in degenerative neuronal diseases.

PUBLIC SERVICE

Member, Scientific Review Committee, Fight for Sight
Participant, Executive Leadership Program for Women in Academic Medicine (ELAM)
President, Los Angeles Society of Ophthalmology
Chair, Neuro-Ophthalmology Pilot Grant Program, North American Neuro-Ophthalmology Society
Councilor, American Academy of Ophthalmology, Representing Women in Ophthalmology
Treasurer and Executive Board Member, Women in Ophthalmology
Chair, David Geffen School of Medicine, Clinical Education Taskforce, Faculty Development/Clinical Teaching Work Group

HONORS

Visiting Professor at the University of Michigan Kellogg Eye Center in Ann Arbor, Michigan
Invited Speaker at China’s First International Symposium on Uveitis in Guangzhou, China

RESEARCH GRANTS

VA Merit Grant: EMP2, a Molecular Switch for Function of RPE2, 3/5/05–9/30/09
Research to Prevent Blindness: James S. Adams Scholar Award, 7/1/02–11/1/07
Hereditable Eye Disorders and Molecular Genetics of Age-Related Maculopathy

Dr. Gorin’s primary research focus is in the field of molecular genetics of hereditable eye disorders, specifically in the complex genetics of age-related maculopathy (ARM). His research group was the first to identify specific regions of the genome that contributed to the development of age-related maculopathy in families, leading to discovery of variations in several genes that contribute to the risk of developing ARM.

Dr. Gorin and other scientific collaborators investigate the molecular genetics of complex disorders such as cystoid macular edema, age-related cataracts, glaucoma, as well as monogenic disorders such as hereditary retinal degenerations, glaucoma, cataracts, and ocular syndromes. He is also pursuing studies to identify genetic variations that contribute to the severity, complications, and therapeutic responses of these conditions.

A major new focus of his laboratory research will be the neurobiology of ocular pain and photophobia (sensitivity to light) using a combination of cell biology, behavioral, and molecular genetic methods. The goal of these studies is to understand the basic biology and neural pathways that contribute to photophobia so that new therapeutic strategies can be developed and tested.

Clinical research efforts are also directed towards the development of methods to monitor and quantify retinal function in progressive retinal disorders (such as diabetic retinopathy, Stargardt disease, and retinitis pigmentosa) and in patients with potential ocular toxicities from systemic medications (such as Plaquenil and tamoxifen).

Applied research interests include bioinformatics in clinical ophthalmic practice and public health issues pertaining to ocular disease.

PUBLIC SERVICE

Co-Editor, Current Eye Research
Member, Association of University Professors of Ophthalmology, Consortium of Medical Education Directors
Member, Special National Institutes of Health Study Sections for the National Eye Institute, National Institute on Aging (Claude Pepper Grants), National Human Genome Research (GEI), Center for Inherited Disease Research
Grant Reviewer, American Health Assistance Foundation
Member, Data Safety Monitoring Committee for Retinitis Pigmentosa Clinical Trial
Speaker, Alliance for Eye and Vision Research (AEVR)
Congressional Briefing on Age-Related Macular Degeneration
Reviewer for many scientific journals

RESEARCH GRANTS

National Eye Institute: Genetics in Age-Related Maculopathy, 4/1/07–3/31/12
American Health Assistance Foundation: Linkage and Association Studies for Macular Degeneration, 4/1/06–3/31/09
Neuro Kinetics/NIH-NEI: Diabetic Retinopathy Diagnosis Device, 9/1/07–8/31/08
Foundation Fighting Blindness: Center Grant (with other investigators), 7/1/05–6/30/10
Sarkaria Family Foundation: Clinical Studies of Stargardt Disease and Development of a New Mouse Model of Stargardt Disease (with other investigators), 7/1/07–6/30/11
Retinal Surgery

Dr. Gupta’s research interests are in the area of complex retinal detachments, retinal vascular diseases, novel drug delivery systems, and ocular imaging strategies.

Dr. Gupta was the principal investigator of the first gene therapy clinical trial at the Jules Stein Eye Institute. His clinical trials span the development of novel surgical approaches for complex post-segment conditions to elegant drug delivery solutions for the back of the eye. He is the principal investigator in the only national trial seeking a preventive treatment for macular degeneration.

As director of the Ophthalmic Ultrasound Laboratory, he has helped to pioneer novel imaging techniques for the retinal periphery. His work with the underserved at Harbor–UCLA in Torrance has led to an interest in health care delivery strategies.

PUBLIC SERVICE

Reviewer for many scientific journals

RESEARCH GRANTS

- Alcon Research, Ltd.: Post Juxtascleral Administration of Anecortave Acetate v. Sham Administration for Patients with Exudative AMD, 6/1/04–5/31/10
- Sirna Therapeutics: Subfoveal Choroidal Neovascularization, 4/29/05–4/1/08
- Allergan Pharmaceutical Corp.: Standard Care v. Corticosteroid (SCORE), 8/20/04–2/19/09
- Gen Vec, Inc.: Intravitreal Injections in Patients with Exudative AMD, 1/31/03–12/31/09
Corneal and Intraocular Refractive Surgery

Dr. Hamilton’s research interests are in the areas of corneal biomechanics, screening for corneal ectatic disorders, and refractive surgical techniques to treat patients with complications from previous refractive surgery. He is also interested in the clinical study of intraocular lenses (IOLs) for the treatment of high myopia (Phakic IOLs) and presbyopia (multifocal and accommodating IOLs).

Dr. Hamilton is actively involved in training residents and fellows in the surgical treatment of refractive errors.

PUBLIC SERVICE

Editorial Board Member: Ophthalmology, Journal of Refractive Surgery, and Journal of Cataract and Refractive Surgery

Member, American Academy of Ophthalmology, Preferred Practice Patterns Committee for Refractive Surgery

Member, American Academy of Ophthalmology, Ophthalmic News and Education Network, Refractive Surgery
Uveitis, Cornea, and External Ocular Disease

Dr. Holland’s research interests involve infectious and inflammatory diseases of the eye. A major focus of current research is ocular toxoplasmosis, the most common retinal infection in the general population. This infection, caused by the parasite Toxoplasma gondii, occurs worldwide and can lead to severe vision loss. Dr. Holland is conducting epidemiological and laboratory investigations in collaboration with investigators at the National Institutes of Health, the US Centers for Disease Control and Prevention, and other universities to understand the sources of infection, course of disease, response to treatment, and disease outcomes. Studies are being conducted to identify host and parasite factors that are related to disease severity. This information may lead to better strategies for treatment of active infections and possibly for prevention of eye involvement altogether.

Since 1981, Dr. Holland has been involved in the study of HIV-related eye disease. Studies are being performed to investigate risk factors for development of cytomegalovirus (CMV) retinitis, a blinding infection among severely immunosuppressed patients. The introduction of potent antiretroviral therapies to treat HIV infections has reduced, but not eliminated, the risk of developing CMV retinitis. Dr. Holland is participating in a large, multicenter study to investigate how the ocular manifestations of HIV disease have changed since the introduction of potent antiretroviral drugs. He is also investigating subtle changes in vision known to occur in HIV-infected individuals. These visual changes may affect an individual’s quality of life and may reflect changes in general health.

In conjunction with members of the Department of Pediatrics, Dr. Holland has established a program to provide care for children with uveitis. He is studying the most effective techniques for evaluation and treatment of uveitis in this age group.

Dr. Holland is also investigating corneal infections, corneal transplantation in patients with glaucoma, and treatment of non-infectious uveitis in adults using various immunosuppressive drugs.

PUBLIC SERVICE

Associate Editor, American Journal of Ophthalmology
Executive Committee Member, American Uveitis Society
Steering Committee Member, Studies of the Ocular Complications of AIDS (SOCA)
Steering Committee Member, Multicenter Uveitis Steroid Treatment (MUST) Trial
Board of Managers Member, Fellowship Compliance Committee, Association of University Professors of Ophthalmology
International Council Member, International Ocular Inflammation Society

HONORS

Elected to the American Ophthalmological Society

RESEARCH GRANTS

National Eye Institute/Johns Hopkins University: Studies of the Ocular Complications of AIDS (SOCA), 8/1/05–7/31/08
National Eye Institute/Johns Hopkins University: Studies of the Ocular Complications of AIDS (LSOCA), 8/1/03–6/30/08
National Eye Institute: Multicenter Uveitis Steroid Treatment Trial (MUST), 5/1/06–4/30/09
Centers for Disease Control and Prevention: Factors Related to the Severity of Ocular Toxoplasmosis, 6/1/06–12/31/07
Research to Prevent Blindness: Physician-Scientist Award, 1/1/03–12/31/07
Joseph Horwitz, PhD

Oppenheimer Brothers Professor of Ophthalmology
Member of the Jules Stein Eye Institute

Biochemistry and Biophysics of the Crystalline Lens

Dr. Horwitz is conducting research on the biochemical and biophysical properties of normal and cataractous lens proteins. In his laboratory, techniques have been developed for the microdissection of single human cataractous lenses and for separating, with the aid of a microscope, opaque areas and adjacent normal areas. The cataractous and normal lens sections are then studied with the aid of a high-performance liquid chromatography system that separates the chemical substances. This work should provide valuable information about the lens proteins, and contribute directly to understanding the processes involved in the development of cataracts. In addition, Dr. Horwitz is investigating the molecular chaperone properties of the eye lens α-crystallin, a protein that plays an important role in keeping the eye lens clear during normal aging. Alpha-crystallin is also involved in age-related macular degeneration, as well as in many other neurodegenerative diseases.

PUBLIC SERVICE
Ad hoc Member, National Institutes of Health, Anterior Eye Disease Study Section
Reviewer for many scientific journals

RESEARCH GRANTS
National Eye Institute: Alpha-Crystallin & Cataractogenesis, 8/1/04–7/31/09
Retinal Photoreceptor Membrane Structure and Function

Dr. Hubbell’s research is focused on understanding the relationship between the molecular structure of a protein and the conformational changes that control its function. Of particular interest are membrane proteins that behave as “molecular switches,” proteins whose structures are switched to an active state by a physical or chemical signal. A primary example under study is light-activated rhodopsin, the visual pigment in photoreceptor cells of the retina. The goal is to elucidate the structure of rhodopsin, the mechanism of the molecular switch, and regulation of this switch by associated proteins, transducin and arrestin. Recently, this research has broadened to include structure/function relationships in water soluble proteins such as the lens protein α-crystallin and the family of retinoid-carrying proteins that transport vitamin A throughout photoreceptor cells.

To investigate these proteins, Dr. Hubbell’s laboratory has developed the technique of site-directed spin labeling (SDSL), a novel and powerful approach to the exploration of protein structure and dynamics. By changing the genetic code, a specific attachment point in the protein is created for a nitroxide spin label probe. Analysis of the electron paramagnetic resonance (EPR) spectrum of the spin label provides information about the local environment in the protein. With a sufficiently large set of labeled proteins, global information on structure is obtained and changes in the structure during function can be followed in real time.

Using SDSL, Dr. Hubbell’s laboratory, in collaboration with colleagues at the Massachusetts Institute of Technology, has developed a topological map of rhodopsin and followed the detailed structural changes that take place upon activation by a single photon of light. Determining such molecular details is essential to understanding the underlying causes of retinal diseases such as retinitis pigmentosa.

PUBLIC SERVICE

Member, National Academy of Sciences
Member, American Academy of Arts and Sciences
Chairman, Advisory Committee of the National Biomedical ESR Center, Medical College of Wisconsin
Member, Advisory Committee of the Center for Very Low Frequency Imaging for In Vivo Physiology, University of Chicago
Member, Advisory Committee for the Advanced ESR Technology Research Center, Cornell University

HONORS

Presented the Keynote Address at the EUROMAR 2007 Conference in Tarragona, Spain
Presented a Plenary Lecture at the Sfb-498 Conference on “Protein Cofactor Interactions in Biological Processes” in Berlin, Germany

RESEARCH GRANTS

National Eye Institute: Molecular Basis of Membrane Excitation, 5/1/05–4/30/10
National Eye Institute: Core Grant for Vision Research, 3/1/04–2/28/09
Sherwin J. Isenberg, MD

Laraine and David Gerber Professor of Pediatric Ophthalmology
Professor of Pediatrics
Vice-Chairman of the UCLA Department of Ophthalmology
Chief of the Ophthalmology Division, Harbor–UCLA Medical Center, Torrance
Member of the Jules Stein Eye Institute

Pediatric Ophthalmology, Amblyopia, and Ophthalmic Pharmacology

Dr. Isenberg’s research activities have concentrated on various aspects of surgical and medical diseases of children’s eyes. The goal is to decrease the frequency of blindness in children worldwide. In a series of studies of newborns, Dr. Isenberg has characterized a number of elements: the type and source of bacteria of the external eye; the evolution of iris structural changes; the development of the macula, which is the source of central vision; and pupillary responses after birth. Recent publications have characterized the production and nature of tears of infants and how the cornea develops in the first year of life. He has also reported the ocular signs in newborns whose mothers abuse cocaine, facilitating the diagnosis of newborn cocaine intoxication.

In another avenue of research, povidone-iodine eye drops have been found to successfully treat bacterial conjunctivitis in a three-year, international study with the University of the Philippines. The eye drops were also found to be safer and more effective in preventing eye infections than the currently used agents. Dr. Isenberg and other investigators have now proven that the povidone-iodine eye drops can treat the number one cause of preventable pediatric blindness in the world—corneal infections due to bacteria. These studies, conducted in children and adults in India and the Philippines, should reduce the number of 400,000 children now blind from corneal infections. Another study in Kenya evaluating new treatment schedules using povidone-iodine eye drops to prevent conjunctivitis of newborns was recently published.

Lastly, a new device that reports blood gases from the conjunctiva, such as oxygen and carbon dioxide, is being developed. Preliminary trials have been completed in animals and in adults undergoing cardiac bypass surgery. The hope is to eventually apply the device to the eyes of premature newborns. The continuous readout of tissue blood gas levels should enable the pediatrician to prevent damage to the baby’s brain and should keep the oxygen at an appropriate level, minimizing the possibility of blindness from retinopathy of prematurity.

PUBLIC SERVICE

Member, Medical Advisory Board and Board of Directors; and Research Committee Chair, Blind Children’s Center

HONORS

2007 Distinguished Alumnus of the Year (Ophthalmology) at Children’s Hospital National Medical Center in Washington, D.C.

RESEARCH GRANTS

Research to Prevent Blindness: RPB Physician Scientist Award, 1/1/06–12/31/07
Thrasher Research Foundation: A Clinical Trial of Povidone-Iodine for the Treatment of Fungal Corneal Ulcers, 3/10/08–8/31/09
National Eye Institute/Intelligent Optical Systems, Inc.: Conjunctival Tissue Gas Monitoring in the Animal Model, 2/25/08–7/31/08
Retinal Disease and Vitreoretinal Surgery

Dr. Kreiger is interested in the expanding field of vitreoretinal surgery. He has worked to clarify the indications for improved outcomes of operations on complex forms of vitreous and retinal diseases, including diabetic retinopathy, complicated rhegmatogenous retinal detachment, and ocular trauma. He has designed numerous surgical instruments and has developed a wide array of surgical techniques. He is particularly interested in the surgical incisions made in the pars plana during vitrectomy and has reported several basic science and clinical investigations that define normal healing as well as the complications that can occur when healing is abnormal. His most recent work examined the epidemiology of proliferative vitreoretinopathy, the most complex form of retinal detachment. In this work, the risk of visual loss in the fellow eye was surveyed and found to be much higher than previously suspected.

PUBLIC SERVICE

Reviewer for many scientific journals

HONORS

Presented the Taylor Smith Lecture at the 36th Aspen Retinal Detachment Society Meeting in Snowmass, Colorado

Presented the Delbert Nachazel Memorial Lecture at the 27th Annual William Beaumont Hospital Conference in Royal Oak, Michigan

RESEARCH GRANTS

Foundation Fighting Blindness: Center Grant (with other investigators), 7/1/05–6/30/10
Optic Disc Evaluation

Dr. Law’s principal research interest focuses on the optic disc. He is working to create a computer-based internet-accessible training program for residents, fellows, general ophthalmologists, and optometrists to improve their ability to evaluate and interpret the optic disc. The course will be delivered via an Internet website to reach as many clinicians as possible.

In one study, Dr. Law is evaluating the optic nerve appearance in patients with age-related macular degeneration. Its purpose is to characterize the appearance of the optic nerve at different stages of macular degeneration and evaluate for any change in appearance over time corresponding to the progression of macular degeneration. The appearance of the optic nerve will be monitored with photos and imaging studies for two years. Patients with age-related macular degeneration are invited to participate in the research and have their optic nerve evaluated by optic nerve photos and confocal imaging studies.

In other studies, Dr. Law is comparing the results of two commonly used tube shunt devices for glaucoma, the Baerveldt implant and Ahmed glaucoma valve. Patients who require a tube shunt procedure to control glaucoma are randomized to receive either one of the two devices and are followed over a period of five years. He also is evaluating the difference in progression of optic neuropathy, visual field changes, IOP control, and management with a case-controlled comparison between all patients seen in his glaucoma clinic with high myopia and patients with primary open angle glaucoma.

PUBLIC SERVICE

Reviewer for many scientific journals

RESEARCH GRANTS

The American Geriatrics Society: Optic Nerve Appearance in Age-Related Macular Degeneration, 7/1/07–6/30/09

Southern California Permanente Medical Group: An Evaluation of the Incidence of Glaucoma Risk Factors in Patients from a Managed Care Setting, 10/1/05–7/31/07
Ocular Inflammatory Diseases

Dr. Levinson’s research interest is ocular inflammatory diseases. He is the primary investigator on international research projects in both the clinical aspects of uveitis and the immunogenetics of ocular inflammation. Current projects include a collaborative longitudinal study of a chronic inflammatory disease, birdshot chorioretinopathy, with investigators in France. The study focuses on the interrelationship of disease factors, as well as the course of disease and response to treatment. Dr. Levinson is also studying the genetic components of the several forms of ocular inflammation in collaboration with investigators in the United States, France, Mexico, and Japan.

PUBLIC SERVICE

Reviewer for many scientific journals

RESEARCH GRANTS

MacDonald Family Foundation: Studies in Immunogenetics of Ocular Inflammatory Disease, 5/1/02–6/30/09
Kevin M. Miller, MD
Kolokotrones Professor of Ophthalmology
Member of the Jules Stein Eye Institute

Cataract and Refractive Surgery

Dr. Miller’s research interests are in cataract and refractive surgery, intraocular lenses, ophthalmic optics, ophthalmic devices, and surgical outcomes. He performs much of his research in collaboration with Michael D. Olson, OD, PhD, with residents and fellows at the Institute, and medical students at UCLA.

Dr. Miller’s clinical practice is focused primarily on refractive cataract surgery. He developed an Astigmatism Management Service for treating corneal astigmatism at the time of cataract surgery that optimizes uncorrected visual acuity following surgery. This service has been adopted by leading surgeons throughout the United States.

The need for cataract surgery is expected to reach epidemic proportions in the United States in the next 10 to 20 years as baby boomers reach the age of cataract development. Dr. Miller is actively working to establish a Comprehensive Cataract Center at UCLA, seeking gifts of all sizes to endow and fund facilities, research projects, equipment purchases, and fellowships.

Dr. Miller is also working with Physical Optics Corporation to develop an adaptive optics eye-tracking scanning laser ophthalmoscope or TASLO. The 2 μ theoretical transverse resolution of the new instrument should allow visualization of retinal details not previously seen by other imaging techniques.

The iris is the colored portion at the front of the eye that contains the pupil. Traumatic aniridia is a condition in which all or part of the iris is damaged in an eye injury. Dr. Miller obtained an individual device exemption from the FDA to study Morcher GmbH implants, and he is an investigator for Ophtec USA in the clinical trial of the 311 iris reconstruction lens. These artificial iris implants have a positive impact on the lives of many unfortunate patients who suffer from severe eye trauma.

PUBLIC SERVICE

Chairman, American Academy of Ophthalmology, Anterior Segment COMPASS Committee
Course Faculty Member, American Academy of Ophthalmology Maintenance of Certification
Member, American Academy of Ophthalmology, Preferred Practice Patterns Committee
Member, American Society of Cataract and Refractive Surgery Cataract Clinical Committee
Editorial Board Member, Comprehensive Ophthalmology Update

HONORS

Inducted into the International Intraocular Implant Club
Recipient of the Senior Honor Award from the American Academy of Ophthalmology

RESEARCH GRANTS

Ophtec, USA: Device Study, 7/14/04–7/15/09
Hoya Corp.: UV Absorbing Acrylic Posterior, 11/1/04–6/30/08
Cornea and External Ocular Diseases and Immunological Disorders

Dr. Mondino’s research activity is focused on cornea-external ocular diseases, with particular emphasis on immunological disorders. He is studying the role of lymphocytes and the complement system in the immunopathogenesis of anterior segment diseases. In addition, a model of staphylococcal hypersensitivity lesions of the cornea is being explored as well as the immune response to staphylococcal endophthalmitis. Other research interests include corneal dystrophies, peripheral corneal ulcers, bullous diseases of the skin and mucous membranes, collagen shields, and contact lens-related corneal ulcers.

PUBLIC SERVICE
Board of Directors Member, Braille Institute
Board of Trustees Member, Association of University Professors of Ophthalmology
Executive Vice-President, Association of University Professors of Ophthalmology
Editorial Board Member, Ophthalmic Surgery, Lasers and Imaging
Editor, Association of University Professors of Ophthalmology, News & Views
Board of Directors Member, National Alliance for Eye and Vision Research
Board of Directors Member, Alliance for Eye and Vision Research

RESEARCH GRANTS
Research to Prevent Blindness: Departmental Unrestricted Grant Award, 1/1/07–12/31/08
Steven Nusinowitz, PhD
Assistant Professor of Ophthalmology
Co-Director of the Visual Physiology Laboratory
Member of the Jules Stein Eye Institute

Mechanisms of Retinal Degeneration
Dr. Nusinowitz’s primary research interest is focused on understanding the cellular contributions to non-invasive measures of visual function and defining the sites and mechanisms of disease action in inherited retinal and visual pathway disorders. His main approach to gaining an understanding of the site and underlying mechanism of disease action in humans is to study the patterns of electrophysiological and psychophysical responses obtained from mice in which the disruption of different cells or pathways in the visual system are specifically targeted by genetic manipulation. By comparing the patterns of responses in human disease with the patterns of responses from rodents with targeted cellular disruption, Dr. Nusinowitz is able to test hypotheses about the underlying pathophysiology in human disease, to provide a mechanism for the development of novel non-invasive diagnostic tools, to develop tools for better diagnosis of clinical disease, and to determine the efficacy of a variety of treatment strategies.

PUBLIC SERVICE
Editorial Board Member, Current Eye Research
Ad hoc Editorial Board Member, Investigative Ophthalmology and Visual Science
Advisor, Mutant Mouse Resource at the Jackson Laboratories
Scientific Advisory Board Member, SYTERA, Inc. and SIRION Pharmaceuticals
Director, JSEI Electrophysiology Reading Center (ERC)

RESEARCH GRANTS
The Karl Kirchgessner Foundation: Unrestricted Grant, 12/1/04–6/30/08
The Vision of Children: Photoreceptor and Retinal Pigment Epithelium, 4/30/06–6/30/08
Foundation Fighting Blindness: Center Grant (with other investigators), 7/1/05–6/30/10
Stein Oppenheimer Award, 4/29/06–4/30/08
Sirion Therapeutics: A Phase II Study of the Safety and Efficacy of Fenretinide, 9/1/07–8/31/09
Drs. Daljit S. and Elaine Sarkaria Fund: Clinical Studies of Stargardt Disease and Development of a New Mouse Model of Stargardt Disease (Principal Investigator, with other investigators), 7/1/07–6/30/11
Biochemistry and Molecular Biology of Retinal Ganglion Cells; Mechanism of Retinal Ganglion Cell Death in Glaucoma

Dr. Piri’s research is aimed toward understanding the molecular mechanisms leading to retinal ganglion cell (RGC) death in glaucoma. It has been established that RGCs die by apoptosis in glaucoma, but the exact pathway from death stimulus to cell death is not understood. As an initial step in identifying potential factors responsible for RGC apoptosis, Dr. Piri’s laboratory is analyzing gene expression patterns that are altered in glaucomatous retinas using DNA microarrays and proteomic technologies, as well as conventional molecular biology, biochemistry, and genetic methods.

Another area of interest is the identification of new genes that are expressed exclusively or preferentially in RGCs. Currently, Dr. Piri is investigating the roles of several RGC-expressed novel genes in RGC differentiation and metabolism, and their possible involvement in glaucomatous or other optic neuropathies. Gene and protein expression studies may lead to a better understanding of the regulatory events involved in RGC apoptosis, and provide molecular targets for the development of new therapeutic agents with neuroprotective effects in order to prevent or delay the loss of ganglion cells in glaucoma.

PUBLIC SERVICE

Reviewer for many scientific journals
Arthur L. Rosenbaum, MD

Brindell and Milton Gottlieb Professor of Pediatric Ophthalmology
Chief of the Pediatric Ophthalmology and Strabismus Division
Vice-Chairman of the UCLA Department of Ophthalmology
Member of the Jules Stein Eye Institute

Pediatric Ophthalmology, Strabismus, Retinal Disease, and Ophthalmic Surgery

Dr. Rosenbaum’s research emphasis is in the field of strabismus (misalignment of the eyes). He is one of the original investigators in the area of botulinum toxin injection of extraocular muscles in the treatment of strabismus and facial spastic disorder. He continues to be involved in research projects utilizing this treatment following surgical overcorrection and undercorrection in an attempt to avoid reoperation; and for sixth nerve palsy.

Dr. Rosenbaum is presently working on new surgical approaches to complicated strabismus problems resulting from trauma and congenital problems, where most of the ocular muscles are not functioning correctly. He has recently completed studies on strabismus complications following cosmetic blepharoplasty and on the use of adjustable suture strabismus surgery in children. Dr. Rosenbaum has recently co-authored a major textbook on strabismus.

HONORS
Presented the Von Noorden Lecture at Baylor University in Houston, Texas

RESEARCH GRANTS
National Eye Institute: Lateral Rectus Reanimation Following Sixth Nerve Palsy, 9/1/04–8/31/08
Research to Prevent Blindness: Physician-Scientist Award, 1/1/04–12/31/08
Age-Related Macular Degeneration and Diabetic Retinopathy

Dr. Sarraf’s research activity has focused on two major diseases: age-related macular degeneration and diabetic retinopathy.

Dr. Sarraf has studied complications of the revolutionary new anti-VEGF therapies. He has determined the incidence of retinal pigment epithelial tears associated with intraocular anti-VEGF therapy and has determined the imaging (including fluorescein angiography and optical coherence tomography) risk factors for development of this event, allowing retinologists a better ability to predict this complication and better inform their patients. Future studies will aim to better classify this complication and to develop therapies to decrease the incidence of this visually debilitating event.

Having studied the racial presentation of diabetic retinopathy, Dr. Sarraf determined that the clinical phenotype of diabetic retinopathy differs between the African American and Hispanic populations.

Dr. Sarraf has also identified novel diseases and signature imaging characteristics for various conditions, including crystalline retinopathy and solar retinopathy.

PUBLIC SERVICE

Director, Annual JSEI and DEI Comprehensive Ophthalmology Review Course
Director, Lasers in Ophthalmology Course
Co-Director, Los Angeles Imaging Conference for Retinal Specialists
Interspecialty Committee Member, American Academy of Ophthalmology
Reviewer for many scientific journals

HONORS

Recipient of the Achievement Award and the Secretariat Award from the American Academy of Ophthalmology
Steven D. Schwartz, MD

Ahmanson Professor of Ophthalmology
Chief of the Retina Division
Director of the UCLA Diabetic Eye Disease and Retinal Vascular Center
Co-Director of the Macula Center
Associate Professor of Ophthalmology
Member of the Jules Stein Eye Institute

Retinal Diseases

Dr. Schwartz’s research interests involve retinal diseases, with particular emphasis on vasoproliferative diseases, such as retinopathy of prematurity and diabetic eye disease; and degenerative diseases like macular degeneration. His basic research includes novel medical device technologies such as scanning lasers, imaging technologies, and surgical equipment including surgical robotics, with particular emphasis centered on diagnostic and treatment applications. Dr. Schwartz’s clinical research focuses on clinical trials where novel pharmacotherapeutic agents are studied to discover treatments for both wet and dry age-related macular degeneration, retinopathy of prematurity (ROP), and diabetic retinopathy.

Dr. Schwartz also has a strong interest in improving both the quality of and access to specialized ophthalmology care through innovative teleophthalmological approaches to screening for eye diseases, specifically diabetic retinopathy and ROP. Currently, a collaborative program with the Gonda Diabetes Center and the Venice Family Clinic is underway, in which screening for diabetic retinopathy is conducted with a nonmydriatic camera (a camera that does not require dilation of the eyes) as part of each patient’s regular diabetes treatment. Results are telecommunicated to specialists at the Jules Stein Eye Institute for interpretation and follow-up.

A number of novel imaging devices are now being studied to determine if early detection of retinal problems can lead to better outcomes for individuals and for patient populations.

PUBLIC SERVICE

Board Member, American Society of Retinal Specialists
Program Committee Member, Association for Research in Vision and Ophthalmology
Diabetic Eye Disease Screening, Venice Family Clinic

RESEARCH GRANTS

Research to Prevent Blindness: Mrs. Merrill Park Award, 6/15/01–6/30/08
Alcon Research, Ltd.: Post Juxtascleral Administration of Anecortave Acetate v. Sham Administration in Patients with Exudative AMD, 6/1/04–5/31/10
Sirna Therapeutics: Subfoveal Choroidal Neovascularization, 4/29/05–4/1/08
Allergan Sales, LLC: Dexamethasone Posterior Segment Drug Delivery System, 8/16/04–1/31/09
Allergan Sales, LLC: DEX PS DDS Applicator System in the Treatment of Patients with Diabetic Macular Edema, 8/25/05–12/31/09
Chiltern Int.: A Multicenter, Randomized, Placebo-Controlled, Double-Masked, Parallel Group, Dose Ranging Clinical Trial, 4/1/07–3/31/09
Emmes Corp.: Age Related Eye Disease Study II, 1/1/06–12/31/08
Genentech, Inc.: Ranibizumab with CNV, 3/1/06–2/28/09
Genentech, Inc.: Ranibizumab Injection, 10/5/07–8/31/12
Lowy Medical Research Institute/NEI: Macular Telangiectasia, 9/1/05–8/31/10
NEI/JAEB Center for Health Research: The Diabetic Retinopathy Clinical Research Network, 6/1/03–12/31/09
University of Pennsylvania: Comparison of AMD Treatment Trials (Coordinating Center), 9/1/07–7/31/08
Molecular Mechanism of Vitamin A Transport; Macular Degeneration

Dr. Sun’s laboratory studies mechanisms of macular degeneration and vitamin A transport for vision. Macular degeneration is a leading cause of blindness in the developed world and vitamin A deficiency is the leading cause of blindness in the third world. Vitamin A is essential for vision because it is the precursor for the chromophore of photoreceptor proteins and also plays critical roles in eye development. Plasma retinol binding protein (RBP) is the principal carrier of vitamin A in the blood. Despite an overwhelming amount of evidence accumulated during the past three decades supporting the existence of a cell-surface receptor for RBP, it has eluded identification.

Using a novel biochemical strategy, Dr. Sun’s laboratory identified the RBP receptor as a multi-transmembrane protein of previously unknown function. Expression of this protein is highly enriched in blood-organ barriers such as the retinal pigment epithelium (RPE). The RBP receptor specifically binds to RBP and facilitates the release of vitamin A from the vitamin A/RBP complex and the transport of vitamin A into the cell. In this process, it simultaneously functions as a membrane receptor and a membrane transporter. The RBP/RBP receptor system represents a rare example in eukaryotic cells of a small molecule delivery system that involves an extracellular carrier protein but does not depend on endocytosis.

Recent human genetic studies found that the RBP receptor is essential for the formation of human eyes, consistent with the critical role of vitamin A in eye development. Dr. Sun’s laboratory is using a variety of techniques to study this new membrane transport system. To elucidate the etiology of macular degeneration, his group is studying both the pathogenic and protective mechanisms of this puzzling disease. The long-term goal of these studies is to reveal the fundamental causes of the disease so that more effective and efficient therapies can be developed.

PUBLIC SERVICE

Ad hoc reviewer, National Institutes of Health, National Eye Institute
Ad hoc reviewer, Medical Research Council, U.K.
Reviewer for many scientific journals

HONORS

Ellison Medical Foundation Scholar

RESEARCH GRANTS

National Eye Institute: Molecular Mechanism of Vitamin A Uptake for Vision, 9/30/07–8/31/12
Karl Kirchgessner Foundation: Research Award, 3/1/07–2/28/08
Ellison Medical Foundation: New Scholar Award, 9/1/06–8/31/10
Foundation Fighting Blindness: Research Grant, 5/1/07–4/30/10
E. Matilda Ziegler Foundation, 12/1/04–11/30/07
Gabriel H. Travis, MD

Charles Kenneth Feldman Professor of Ophthalmology
Associate Director of the Jules Stein Eye Institute
Co-Chief of the Vision Science Division

Biochemistry of Vertebrate Photoreceptors and Mechanisms of Retinal Degeneration

Dr. Travis’s research group uses biochemical and genetic approaches to study the function of photoreceptor cells. Vision in vertebrates is mediated by two types of light-sensitive cells, rods, and cones. The light-sensitive structure of rods and cones is the outer segment, comprising a stack of flattened disks filled with opsin visual-pigment. Mice with the spontaneous mutation, retinal degeneration slow or rds, completely lack outer segments. Dr. Travis originally cloned the gene for rds and helped to show that in some families, mutations in the corresponding human gene are responsible for an inherited blinding disease called retinitis pigmentosa. One project in his laboratory is to define the role of rds in the folding of outer-segment discs. A second project is to study the function of a newly identified transporter protein called ABCR. Mutations in the human ABCR gene are responsible for Stargardt disease, the most common form of inherited juvenile macular degeneration. Dr. Travis’s group generated mice with a mutation in this gene. Biochemical analysis of the phenotype in abcr-mutant mice led them to the molecular cause of Stargardt disease. This understanding suggested a pharmacological strategy to reverse the biochemical defect in abcr-mutant mice. Testing of this strategy is underway with encouraging preliminary results. Another project ongoing in his laboratory concerns the mechanism of visual-pigment regeneration in cone photoreceptors. Despite the importance of cones, little is known about how visual pigments are replenished to permit sustained vision under daylight conditions. Recent results from his group point to the existence of a new pathway for regenerating visual pigments in cones. The Travis group is currently working to purify and clone the enzymes that define this new biochemical pathway.

PUBLIC SERVICE

Scientific Advisory Panel Member, The Karl Kirchgessner Foundation Vision Science Program
Reviewer for many scientific journals

RESEARCH GRANTS

Research to Prevent Blindness: Stein Professorship Award, 7/1/01–6/30/08
National Eye Institute: The Role of Muller Cells in Visual Pigment Regeneration, 3/1/08–2/28/13
National Eye Institute: Biochemical and Genetic Analysis of the Visual Cycle, 9/9/05–7/31/10
Bruce Ford and Anne Smith Bundy Foundation Grant, 7/1/03–8/15/08
National Eye Institute: Vision Science Training Grant, 9/30/05–9/29/10
Macula Vision Research Foundation: A2E Accumulation in the Macular Degenerations: Pathogenic Significance & Implications for Treatment, 7/31/07–6/30/10
Foundation Fighting Blindness: Center Grant (with other investigators), 7/1/05–6/30/10
Corneal Contact Lenses and Corneal Oxygen Transport

Dr. Weissman continues to study the optics and physiological tolerance of contact lens systems. He has specified a model that predicts optical changes that are induced when a hydrogel (soft) contact lens “wraps” onto a human cornea. This model has shown its applications in lens design. Dr. Weissman investigates the severe complications occasionally encountered with contact lens wear, such as neovascularization, abrasion, and corneal infection. He is interested in systems for oxygen supply to the corneas of contact lens wearers, and in the ability of contact lenses and emerging ophthalmic devices to transmit oxygen. He recently published a model that predicts the tear layer oxygen under different contact lens designs. Keratoconus, a corneal disease treated with contact lenses, is another area of interest. Dr. Weissman was the principal investigator for the UCLA center of the National Eye Institute-sponsored Collaborative Longitudinal Evaluation of Keratoconus (CLEK) study.

PUBLIC SERVICE

Education Committee Member and Board Member, Los Angeles County Optometric Society
David S. Williams, PhD

Professor of Ophthalmology and Professor of Neurobiology
Member of the Jules Stein Eye Institute

Cell Biology of the Retina and Inherited Retinal Disease

Dr. Williams’s laboratory focuses on the cell biology of photoreceptor and RPE cells. His group is especially interested in the proteins that underlie Usher syndrome, and one area of his research involves gene therapy experiments aimed at preventing the blindness that ensues from Usher syndrome type 1B. Past studies have elucidated transport roles for the Usher 1B protein, myosin VIIa, in the retina. Recently, a proof-of-principle study was published, showing that virus-based delivery of the myosin VIIa gene to the retina could correct defects in a mouse model of Usher 1B. In more basic studies, his laboratory is investigating how proteins and organelles are moved around within the photoreceptor and RPE cells.

PUBLIC SERVICE

Scientific Advisory Board, Foundation Fighting Blindness
Executive Board Member, Sustainability Council of New Zealand
Invited Panel Member, United Nations FAO Workshop on Safety of Genetic Engineering
Founding Committee Member, International Society for Ocular Cell Biology
Organizing Committee, First International Symposium on Usher Syndrome and Related Disorders
Associate Editor, Visual Neuroscience
Reviewer for many scientific journals

HONORS

Presented the Centre of Excellence in Vision Science Plenary Lecture at the AOVSM Meeting in Canberra, Australia
Recipient of a Research to Prevent Blindness, Jules and Doris Stein Professorship

RESEARCH GRANTS

National Eye Institute: Retinal Cell Biology of Usher 1 Proteins, 12/1/07–11/30/08
National Neurovision Research Institute/FFB: Development of Lentivirus-Based Usher 1B Gene Therapy, 10/1/07–6/30/08
Research to Prevent Blindness: Doris and Jules Stein Professorship, 1/1/08–12/31/12
Development and Disease Therapy of the Retina

Dr. Yang is interested in the molecular and cellular mechanisms underlying retinal development and disease. Her research efforts are directed toward understanding how retinal progenitor (precursor) cells become different types of mature retinal neurons during formation of the retina. To achieve these goals, her laboratory uses a variety of molecular and cellular approaches to study genes involved in cell-to-cell communication and neuronal differentiation. As important research tools, Dr. Yang utilizes special laboratory-based viruses to mediate gene transfer and advanced transgenic technologies. In addition, Dr. Yang’s laboratory is developing viral vector based gene therapy and stem cell based cell therapy for a variety of retinal degenerative diseases. Her research will enhance researchers’ capabilities to manipulate retinal progenitor and stem cells, thereby contributing to the effort to combat retinal degenerative diseases.

RESEARCH GRANTS

National Eye Institute: Cytokine Signal Transduction in Retinal Development, 9/30/05–7/31/09
Foundation Fighting Blindness/UC San Diego: Development of Lentivirus-Based Usher 1B Gene Therapy, 7/1/06–4/29/08
Research to Prevent Blindness: Dolly Green Scholar Award, 7/1/03–6/30/08
Foundation Fighting Blindness: Center Grant (with other investigators), 7/1/05–6/30/10
Tara A. Young, MD, PhD
Assistant Professor of Ophthalmology
Director of the Ophthalmic Oncology Center
Member of the Jules Stein Eye Institute

Metastatic Ocular Melanoma
The Ophthalmic Oncology Center, under Dr. Young’s direction, is researching molecular markers in ocular melanoma to provide prognostic information to patients and to better understand metastatic disease. This information may be important to establish better treatments for this cancer. New modalities are being investigated to predict, detect, and ultimately treat choroidal melanoma metastasis.

Surgical Approaches to Vitreoretinal Disease and Cancer
Dr. Young is one of a very few physicians who is a vitreoretinal surgeon and an ophthalmic oncologist. She manages the spectrum of vitreoretinal disease in addition to the surgical management of ocular melanoma, allowing patients to maximally benefit from a wide range of surgical prognostic and therapeutic expertise she brings to the Jules Stein Eye Institute.

PUBLIC SERVICE
Member, Macula Society
Member, Retina Society
Member, American Academy of Ophthalmology
Member, International Congress of Ophthalmic Oncology
Member, Association for Research and Vision in Ophthalmology
Fellow, Royal College of Physicians and Surgeons of Canada, Ophthalmology
Reviewer for many scientific journals

RESEARCH GRANTS
Council on Research: Faculty Research Grant, 7/1/07–6/30/08
American Association of Cancer Research: Career Development Award, 7/1/08–6/30/10
INSTITUTE MEMBERS BASED AT OTHER SITES

James W. Bisley, PhD
Assistant Professor of Neurobiology
Vision and Visual Perception
Dr. Bisley's research revolves around understanding the neural mechanisms underlying the cognitive processing of visual information. These cognitive processes include visual perception, visual memory and visual attention. Recent work has focused on how the responses of neurons in posterior parietal cortex are involved in the allocation of visual attention and how they drive eye movements.

Nicholas C. Brecha, PhD
Professor of Neurobiology and Medicine
Vice Chair of the Department of Neurobiology
Member of the Jules Stein Eye Institute
Member of the Brain Research Institute
Member of CURE: Center for Digestive Diseases
Functional Organization of the Mammalian Retina
Dr. Brecha's research focuses on the elucidation of the cellular and neurochemical organization of the outer and inner retina. Morphological studies have defined cell types and classes, and neurochemical studies have investigated the modulatory action of neurotransmitters and neuroactive peptides. Experimental work has led to the formulation of a model to investigate the functional role of neuropeptides in the retina and provide evidence for the current hypothesis that neuropeptides are modulators of retinal neurons and circuitry. Other experimental work has suggested a vesicular mechanism underlies transmitter release from horizontal cells in the mammalian retina. These investigations are fundamental steps in establishing the retina’s functional organization and provide the basis for understanding the pathophysiology of retinal dysfunction.

Michael Danciger, PhD
Research Ophthalmologist
Professor of Biology at Loyola-Marymount University, Los Angeles
Member of the Jules Stein Eye Institute
Genetic Factors Influencing Retinal Degenerations
The focus of Dr. Danciger’s research is twofold: Identify genetic factors (especially those that are protective) that influence or modify the course of retinal degenerations as a result of light exposure or inherited mutations; and identify the genetic factors that contribute to age-related retinal degeneration. It is hoped that this research will open pathways of study leading to treatments that will prevent retinal degenerations or decrease their severity.

Dario L. Ringach, PhD
Professor of Neurobiology and Psychology
Member of the Jules Stein Eye Institute
Visual Perception, Eye Movement and Sensorimotor Integration
Dr. Ringach’s research focuses on the relationship between eye movements and visual perception, as well as how motor planning and execution, such as reaching, grasping and navigating, is influenced by visual information. Using virtual reality environments, he and his colleagues are studying how human subjects interact with visual stimuli that can be controlled in real time depending on the individual’s eye, head, and limb movements. They are examining how visual feedback is used to guide motor actions as well as how the brain adapts to novel situations, such as simulated increases in the total feedback delay.
Terry J. Smith, MD
Professor of Medicine
Milly and Steve Liu Scholar
Chief of the Division of Molecular Medicine at Harbor—UCLA Medical Center
Member of the Jules Stein Eye Institute

Orbital Connective Tissue and its Involvement in Graves Disease

Dr. Smith’s research involves the molecular pathogenesis of thyroid-associated ophthalmopathy (TAO). He and his colleagues have been characterizing the unique phenotype of human orbital fibroblasts because those cells appear to be intimately involved in TAO. In particular, Dr. Smith has applied a wide array of molecular techniques to identify specific fibroblast genes and their products, which he believes lead to the dramatic inflammation and tissue remodeling that occurs in the orbit in TAO. The relationship between the orbit and thyroid gland is uncertain and why the two tissues should share involvement in Graves disease is unknown at this time. One feature common to both, is the infiltration of activated T lymphocytes. Dr. Smith has found that both orbital fibroblasts and thyrocytes, when activated, participate in the trafficking of T lymphocytes to diseased tissues. He and his colleagues have discovered that Graves disease-specific antibodies bind to and activate the insulin-like growth factor receptor. In so doing, powerful T lymphocyte chemoattractant molecules are expressed. His research group is currently studying intracellular signaling pathways utilized in this gene inductive process.

Guido A. Zampighi, PhD
Professor of Neurobiology
Member of the Jules Stein Eye Institute

Intercellular Junctions and Communication

A fundamental property of cells organized in tissues is their ability to communicate with each other via highly specialized areas of plasma membrane contact, called junctions. Dr. Zampighi is studying the gap junction and the chemical synapse, two specialized junctions that mediate electrical and chemical transmission, respectively. The gap junction is composed of specialized channels containing small hydrophilic pores that span the two plasma membranes and the intervening extracellular space (the cell-to-cell channel). He is investigating the high resolution structure of the channels as well as the mechanisms of assembly, insertion, and retrieval of the connexin proteins which form them. The chemical synapse is composed of a presynaptic neuron filled with small diameter vesicles that contain high concentration of neurotransmitters and a postsynaptic neuron with receptors. He is studying the mechanisms by which the synaptic vesicles attach (“dock”) to the presynaptic membrane. He uses structural (electron microscopy), biochemical, and electrophysiological techniques in an attempt to identify, purify, and characterize the channels and transporters of both junctions in an effort to further understand the mechanisms mediating cell communication.
Novrouz Akhmedov, PhD
Assistant Research Ophthalmologist

Molecular Biology of the Retina
Dr. Akhmedov’s primary research objectives include the identification of differentially expressed and novel retinal genes, the evaluation of their function in the maintenance of the retina, and their possible involvement in human hereditary retinal degenerative diseases. His initial studies on the 7R (recently isolated) gene revealed that a mutation in its sequence is associated with autosomal recessive retinitis pigmentosa. He showed that 7R is a membrane-associated protein and detected its juxtanuclear localization in the ER/Golgi apparatus region of transfected HEK 293 cells. Dr. Akhmedov is currently investigating how the 7R protein, in conjunction with other partner proteins, exerts an effect on the structural and functional organization of the Golgi apparatus.

Christian Altenbach, PhD
Research Ophthalmologist

Structure and Function of Rhodopsin
The membrane protein rhodopsin is a critical first step in visual transduction, converting light energy into a chemical form in the photoreceptor cell of the eye. To understand this process on a detailed, molecular level, Dr. Altenbach is using site-directed spin labeling (SDSL) and electron paramagnetic resonance spectroscopy (EPR) to study the structure of rhodopsin in the absence of light, as well as the changes in structure caused by light. This research will add to the scientific base for hereditary eye diseases.

Qingling Huang MD
Assistant Research Ophthalmologist

Structure and Function of Alpha-crystallin
Dr. Huang’s research is focused on understanding the function and structure of alpha-crystallin. Alpha-crystallin is one of the major structure proteins of the eye lens. This protein is a member of the small heat-shock proteins and is capable of protecting other proteins from denaturation and aggregations. This protein is very important because it is over-expressed in many neurological diseases.

Minghao Jin, PhD
Associate Research Ophthalmologist

Molecular Biology and Biochemistry of the Visual Cycle and Retinal Degeneration
Dr. Jin’s research focuses on the molecular and biochemical mechanisms that regulate the retinoid visual cycle. His major activities include cloning and characterization of novel or unidentified genes involved in the visual cycle. With his colleagues, he has identified the Rpe65 gene, and demonstrated that the disease-causing mutations in the Rpe65 gene abolish the isomerase activity. Loss of Rpe65 isomerase activity has been linked to the early onset blinding disease known as Leber’s congenital amaurosis. Dr. Jin is also investigating the function of interphotoreceptor retinoid-binding protein (IRBP), a major soluble protein component of the interphotoreceptor matrix in the visual cycle and retinal degeneration. Using mice that lack IRBP, he recently found that it plays an essential role for cone vision and cone survival. Understanding the detailed function of IRBP at the molecular level may provide valuable knowledge for the development of a novel therapeutic intervention for photoreceptor degeneration.

Jacky M.K. Kwong, PhD
Assistant Research Ophthalmologist

Degeneration of Retinal Ganglion Cells and Neuroprotection
Dr. Kwong’s research goal is to understand the mechanisms of glaucomatous optic nerve damage and to identify novel neuroprotective therapies for glaucoma. He is studying the response and the cell death pathway of retinal ganglion cells in experimental animal models related to optic nerve injury and glaucoma. He is also applying pharmacologic techniques to evaluate therapies that enhance endogenous neuroprotective responses against glaucomatous, excitotoxic and axonal damage to nerve cells, and utilizing multi-disciplinary methods to understand the protective mechanisms.
Michael D. Olson, OD, PhD
Associate Research Ophthalmologist

Comprehensive Ophthalmology

Dr. Olson’s research activities focus on the visual and surgical outcomes following cataract surgery and the surgical correction of refractive errors. He is currently studying the Hoya YA-60BB intraocular lens, which absorbs UV and Blue Light for improved protection of the retina, and the Ophtec Reconstruction Lens for the treatment of partial or complete aniridia. With Kevin M. Miller, MD, he obtained a humanitarian device exemption from the U.S. Food and Drug Administration for Morcher GmbH aniridia implants to treat eyes with congenital and acquired iris defects. This investigation has recently been expanded to include additional Morcher devices, and patients with compromised corneas. Other research includes surgical and visual performance outcomes of functionally monocular patients, thermal imaging comparison of phacoemulsification instruments, efficacy and safety of minus power intraocular lens (IOL) implantation in highly myopic eyes having cataract surgery, and the evaluation of Pentacam vs. standard corneal topography for IOL power calculation following keratorefractive surgery.

Maria Carolina Ortube, MD
Assistant Research Ophthalmologist

Ocular Genetics

Dr. Ortube is currently an investigator in four clinical and translational research projects related to ocular genetics. The Genetics of Age-Related Maculopathy (GARM) study focuses on the genetic and environmental risks that contribute to age-related maculopathy (ARM). Findings may contribute to the development of therapeutic and preventive strategies for ARM and to the identification of risk factors for developing this disease. The genetics of inherited eye disorders protocol and the Stargardt studies provide for the clinical characterization of affected individuals and at-risk family members, using state-of-the-art imaging and functional technologies in conjunction with molecular genetic testing to identify causative genes and mutations. A major goal of the Stargardt Study is to establish the most sensitive and reliable methods for assessing disease severity and progression for future clinical trials. Dr. Ortube is also investigating a simple, noninvasive, rapid method for widespread screening of diabetics in order to identify those who may require medical attention and/or therapy for diabetic retinopathy. The study monitors the responses of the pupil to light as a method for detecting regional losses of function of the retina.

Roxana A. Radu, PhD
Assistant Research Ophthalmologist

Retinoids Metabolism in the Eye and Underlying Mechanisms of Macular Degeneration

Dr. Radu’s research focuses on the visual cycle and underlying biochemical and molecular mechanisms of macular degeneration. Several research groups have observed that the gene for complement factor H (CFH), a component of the innate immune system, is a strong susceptibility locus for AMD. However, the mechanism by which dysfunction of CFH causes AMD is not known. Using the abca4 null mutant mouse, a well established animal model for lipofuscin-based maculopathies, Dr. Radu will test the hypothesis that abnormal metabolism of vitamin A and its derivatives could lead to overt activation of the complement system. She will also generate two new mouse models for AMD to investigate the biochemical and molecular mechanisms used by the retinal pigment epithelium to deal with abnormal build-up of vitamin A-based toxic compounds such as A2E. These complex mouse genetic models will advance understanding of the relationship between lipofuscin accumulation, complement activation, and photoreceptor degeneration in AMD, and will be a valuable tool for developing new treatments for this disease.

Jun-ru Tian, MD, PhD
Associate Research Ophthalmologist

Interaction Between Vestibulo-Ocular Reflex (VOR) and Saccadic Eye Movements During Eye-Head Coordination

Dr. Tian is investigating the mechanism of abnormal gaze reflexes caused by cerebellar dysfunction, inner ear disturbances, and aging. These impairments can affect eye and head coordination. Specifically, she is studying the interaction of vestibular-ocular reflex or VOR (involuntary rotation of the eyes in the opposite direction from head rotation) and saccadic eye movements that normally occur to shift the gaze promptly from one cued target location to another. Investigation of this interaction may provide insight into the neural reflex system that coordinates eye and head movement, leading to the development of synergistic strategies for compensation.
PROFESSIONAL CLINICAL SERIES

John D. Bartlett, MD
Clinical Instructor of Ophthalmology

Cataract Surgery
Dr. Bartlett provides clinical supervision to resident physicians at the University Ophthalmology Associates and teaches medical students during their ophthalmology surgical sub-specialties clinical rotation.

Melissa W. Chun, OD
Associate Clinical Professor of Ophthalmology
Director of the UCLA Vision Rehabilitation Center

Vision Rehabilitation
Dr. Chun’s research interest is in the area of vision rehabilitation for patients with low vision. She is currently conducting research on the effect of internet access training on quality of life of patients with age-related macular degeneration. She is also participating in a multi-center pilot study to evaluate the effectiveness of visual rehabilitation services and how to improve methods of vision rehabilitation care.

Jean-Pierre Hubschman, MD
Clinical Instructor of Ophthalmology

Advanced Vitreoretinal Surgical Interventions and Robotics
Dr. Hubschman’s clinical research focuses on the development and evaluation of new vitreoretinal surgical techniques and robotics for ophthalmic surgery. Automated surgery utilizing robotics promises to increase surgical precision and accuracy, and improve access to medical care. His recent publications include research papers as well as a book chapter about the feasibility of robotic surgery in ophthalmology.

Tanuj Nakra, MD
Clinical Instructor of Ophthalmology

Diseases and Therapy of the Eyelid and Orbit
Dr. Nakra is participating in several clinical research projects related to diseases and therapy of the eyelid and orbit. His investigation of Graves disease has led to the description of the lateral displacement of the globe in Graves disease, and the clinical and surgical implications of this finding. He is quantifying patterns of facial asymmetry and their predictive relationship with pathologic eyelid positions. Other clinical projects underway include novel methods of post-cancer reconstruction and the extended uses of fluorouracil in treating periorcular lesions. This past year, Dr. Nakra authored the Ophthalmic Plastic Surgery chapter in the textbook “Risk Prevention in Ophthalmology.”

Susan S. Ransome, MD
Clinical Instructor of Ophthalmology

Cytomegalovirus (CMV) Retinitis
Dr. Ransome is participating in several clinical research studies involving HIV-infected patients, some of whom have AIDS and cytomegalovirus (CMV) retinitis. In one study, investigators are following patients over time to see what types of eye problems develop in HIV-infected individuals in the era of potent antiretroviral therapies.

Meryl L. Shapiro-Tuchin, MD
Assistant Clinical Professor of Ophthalmology
Director of the Ophthalmology Inpatient Consultation Service

Comprehensive Ophthalmology
Dr. Shapiro-Tuchin provides clinical supervision to resident physicians while they are attending patients at University Ophthalmology Associates clinics. She also functions as Director of the Ophthalmology Inpatient Consultation Service, assisting resident physicians in their evaluation of inpatients admitted to the David Geffen School of Medicine at UCLA. She provides clinical instruction to medical students during their rotation in Ophthalmology.
Angelo Tsirbas, MD
Clinical Instructor of Ophthalmology
Orbital Diseases and Ophthalmic Plastic Surgery
As part of a multidisciplinary team of researchers, Dr. Tsirbas is studying the mechanisms of thyroid orbitopathy and is involved in the development of new minimally invasive surgical approaches for the treatment of complicated orbital lesions. He is currently working on robotic applications of eye surgery and endoscopic orbital approaches. Dr. Tsirbas is also actively involved in the evaluation of new minimally invasive aesthetic procedures for facial rejuvenation.

Federico G. Velez, MD
Clinical Instructor of Ophthalmology
New Approaches to Strabismus
As part of a multidisciplinary team of researchers, Dr. Velez is studying the mechanisms of congenital and acquired forms of strabismus and is involved in the development of new surgical approaches for the treatment of complicated forms of ocular motor deficiencies. He has participated in the development of guidelines for preoperative assessment and surgical approaches to patients with convergent (esotropia), divergent (exotropia), and vertical forms of strabismus, and has developed new techniques to treat pediatric patients with eyelid abnormalities and cataracts.

EMERITUS FACULTY

Leonard Apt, MD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Chief of the Division of Pediatric Ophthalmology and Strabismus
Member of the Jules Stein Eye Institute

Michael O. Hall, PhD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Member of the Jules Stein Eye Institute

Robert S. Hepler, MD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Chief of the Neuro-Ophthalmology Division
Member of the Jules Stein Eye Institute

Bradley R. Straatsma, MD, JD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Chairman of the Department of Ophthalmology
Founding Director of the Jules Stein Eye Institute

Richard W. Young, PhD
Professor of Neurobiology Emeritus
Member of the Jules Stein Eye Institute

LECTURERS

Kathleen L. Boldy, V. MD
Lecturer in Ophthalmology

Samuel M. Genensky, PhD
Lecturer in Ophthalmology
PATIENT CARE SERVICES

The Institute’s program of care for patients encompasses the full range of eye diseases. Nationally and internationally renowned faculty, along with highly skilled clinical fellows and physician residents, provide integrated consultation and treatment, including new diagnostic and therapeutic procedures that have been made available through recent scientific advances. Institute ophthalmologists are supported by optometrists, orthoptists, technicians, and nurses. Care is delivered in distinctive subspecialty treatment centers, service areas, and clinical laboratories, as well as in specially equipped ophthalmic surgical suites and a dedicated inpatient unit.

Faculty Consultation Service
Institute faculty provide direct consultation and treatment, including surgery, to patients through the Ophthalmology Faculty Consultation Service. This service offers both referring physicians and patients a valuable and unique resource for special eye problems. Faculty have extensive, advanced training in ophthalmic subspecialties, which enables them to offer emerging therapies.

University Ophthalmology Associates
Comprehensive and subspecialty eye care in all medical and surgical areas of ophthalmology is offered through University Ophthalmology Associates (UOA). Dr. John D. Bartlett leads UOA as Medical Director. Ophthalmologists, who are members of the UCLA Medical Group, staff the practice.

Inpatient Services
Inpatient ophthalmology services are provided within the medical center to both pediatric and adult patients. The Ophthalmology Inpatient Consultation Service, operating 24 hours a day through the Ronald Reagan UCLA Medical Center, provides consultation and treatment to patients admitted to the hospital’s medical and surgical inpatient services. Led by Dr. Meryl L. Shapiro-Tuchin, the consultation team consists of physician resident staff. Subspecialty coverage from faculty is called upon as needed.

Surgical Services
Ophthalmic surgery of all types, from cataract extraction to removal of ocular and orbital tumors, is performed in the Institute’s dedicated operating rooms. Additionally, a number of laser surgeries, such as laser-assisted in situ keratomileusis (LASIK), and certain aesthetic and retinal laser surgeries and injection procedures, are performed in designated outpatient procedure rooms. Faculty perform surgical procedures according to their specific ophthalmic specialty. They are joined by other medical specialists, including anesthesiologists, nurses, and technicians, to ensure the highest quality pre- and post-operative care.

UCLA Mobile Eye Clinic
The UCLA Mobile Eye Clinic, a 39-foot-long bus specially outfitted with eye examination equipment, was donated to the Jules Stein Eye Institute in 1996 by The Karl Kirchgessner Foundation, Barbara Mott McCarthy, and the Burton C. Bettingen Corporation. This is the third bus to be donated since the program’s founding by the Uncle Claude Fund in 1975. The Mobile Eye Clinic’s staff of trained ophthalmic personnel, led by Dr. Anne L. Coleman, includes Drs. Lawrence M. Hopp, Eddy Nguyen, and Andrew Young. They provide general eye care to over 4,000 adults and children annually throughout Southern California, traveling to schools, shelters, community health and senior citizen centers, health fairs, and organizations that assist homeless and low-income families. Vision services offered include ophthalmic examination and refraction, diagnosis of potential or existing eye disorders, treatment of some ocular diseases, and appropriate referral of patients who need additional services.

Eye and Tissue Bank and Donor Eye Program
The Donor Eye Program, under the direction of Dr. Anthony J. Aldave, was established at the Jules Stein Eye Institute to inform the public of the need for eye tissue and to retrieve donated eyes. The program endeavors to increase the availability of eye tissue for corneal transplantation and for scientific study of underlying causes of various eye diseases. Potential donors are recruited through patient contact by ophthalmology faculty and by a donor information brochure containing all of the documents necessary for donating to the UCLA Eye and Tissue Bank in accordance with the Uniform Anatomical Gift Act. The UCLA Eye and Tissue Bank has established a strong relationship with the Doheny Eye Bank to ensure coordinated efforts.
In the two decades that the Eye and Tissue Bank has been in operation, the waiting time for corneal transplantation has decreased from several months to less than two weeks, not only at the Jules Stein Eye Institute, but also at the UCLA-affiliated hospitals where this surgical procedure is performed. For emergency cases, tissue is available within 24 hours.

SUMMARY OF PATIENT CARE STATISTICS

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Consultation Service</td>
<td></td>
</tr>
<tr>
<td>Patient visits</td>
<td>63,146</td>
</tr>
<tr>
<td>University Ophthalmology Associates</td>
<td></td>
</tr>
<tr>
<td>Patient visits</td>
<td>19,653</td>
</tr>
<tr>
<td>Inpatient Consultation Service</td>
<td></td>
</tr>
<tr>
<td>Patient evaluations</td>
<td>331</td>
</tr>
<tr>
<td>Clinical Laboratories</td>
<td></td>
</tr>
<tr>
<td>Procedures</td>
<td>24,699</td>
</tr>
<tr>
<td>Surgery Services</td>
<td></td>
</tr>
<tr>
<td>Number of procedures</td>
<td>7,462</td>
</tr>
<tr>
<td>Mobile Eye Clinic</td>
<td></td>
</tr>
<tr>
<td>Number of patients seen</td>
<td>3,792</td>
</tr>
<tr>
<td>Ocular abnormalities</td>
<td>38%</td>
</tr>
<tr>
<td>Number of trips</td>
<td>165</td>
</tr>
</tbody>
</table>

The Ophthalmology Treatment Centers provide subspecialty care from faculty physicians who are actively involved in related research, enabling emerging and experimental treatment options to be developed for a gamut of eye disorders. In addition to comprehensive treatment, the centers provide both patients and physicians expert diagnostic and consultation services for diseases that are difficult to identify and treat. Ophthalmology faculty work closely with other specialists, both within the Jules Stein Eye Institute and other UCLA clinical departments, to create a multidisciplinary team customized for each patient’s unique medical needs. Services provided by the centers may be inpatient or outpatient in nature, draw upon the surgical skills of ophthalmology faculty when necessary, and be coordinated with patients’ nonvision treatment needs when appropriate.

Aesthetic Center

The Aesthetic Center, under the direction of Dr. Robert Alan Goldberg, provides services to patients who are interested in enhancing their appearance through aesthetic surgery. Established in 1998, the Center has rapidly earned a reputation for high quality, individualized care delivered by surgeons trained in both ophthalmic and plastic surgery.

Surgical services offered in the Aesthetic Center include laser-assisted upper and lower eyelid blepharoplasty, endoscopic forehead lifting, liposuction, lifting of the neck and face, and dermal filler and other cosmetic injections to smooth facial lines. Center physicians have pioneered surgical techniques to improve the normal function and appearance of the eyes and face, and often receive referrals for correction of complications from previous plastic surgery.

A major goal of the Center is to educate patients on what they might achieve with aesthetic surgery. In conjunction with in-depth consultation, videotapes and digital photography are used to facilitate discussion. A comfortable, private suite provides a confidential setting for pre- and post-operative care, and procedures are performed in dedicated surgical facilities. A range of post-surgical nursing options are available, from home care to the Institute’s ophthalmic inpatient unit.

Aesthetic Center faculty conduct clinical research that focuses on improving understanding of skin processes, such as aging and healing, and on developing new techniques and substances for aesthetic surgery.
UCLA Center for Eye Epidemiology
The UCLA Center for Eye Epidemiology, under the direction of Dr. Anne L. Coleman, was established in 1998 to promote interdisciplinary investigations into blinding diseases of public health importance and is supported by private donations including an endowment established by The Ahmanson Foundation. Colleagues with expertise in epidemiology, biostatistics, health policy, public health, and international health collaborate with ophthalmologists around the world to advance knowledge related to the causes and prevention of specific eye diseases. It is a coordinating body for expanding and sharing information about vision health. The Center maintains and improves vision health through public health research and intervention.

The pursuits and goals of CEE further its mission:
• Study the eye and its function and health in the broader context of the individual, the community, and society
• Incorporate the prevention, treatment, and rehabilitation of blinding eye diseases into its programs
• Promote vibrant communication among scientists, professionals, research groups, students, and advocates for vision health
• Develop and support experts from several disciplines
• Develop a vision healthcare message for the public
• Disseminate findings to researchers, educators, and the broader community
• Increase general awareness of vision health issues by individuals and populations

Clinical Research Center
The Jules Stein Eye Institute’s Clinical Research Center functions under the direction of Dr. Gary N. Holland, with Co-Directors Drs. Joseph Caprioli, Steven D. Schwartz, and Ralph D. Levinson. Established in 1998, the Center provides core support to faculty members conducting patient-based research studies. This support involves vital, behind-the-scenes activities that facilitate the clinical research process. Center staff liaise with grant agencies and government regulatory bodies, assist with the preparation of grant applications, participate in the design and management of clinical studies, and perform data collection and analysis functions.

Institute faculty are currently conducting more than 30 clinical research studies (listed in the Appendices). Patients can volunteer to participate in studies that contribute to a better understanding of ocular disorders or that evaluate new, potentially better treatments for various diseases of the eye.

Center to Prevent Childhood Blindness
The Center to Prevent Childhood Blindness, under the direction of Dr. Sherwin J. Isenberg, is committed to reducing pediatric blindness. Currently 1.5 million children worldwide are blind, primarily due to premature births, genetic disorders, and infections. UCLA physicians and basic scientists, including Drs. Leonard Apt, Gary N. Holland, Steven Nusinowitz, and Irwin Weiss, have joined forces to conduct collaborative research, education, and patient care programs designed to increase awareness and help treat pediatric blindness. A significant emphasis of the Center is on a noninvasive method of measuring blood gases from the surface of the eye, which may be critical in preventing retinopathy of prematurity, a leading cause of blindness in premature newborns. Another emphasis is to develop inexpensive ocular antibiotics for underdeveloped areas to treat corneal infections that now blind more than 400,000 children worldwide.

The Center has completed a study showing that a very inexpensive antiseptic solution can treat corneal ulcers in children. For a few pennies a day, the number one preventable cause of childhood blindness can be treated. This will hopefully prevent thousands of children from going blind, especially in underdeveloped areas. Additional private support will enable center physicians and basic scientists to develop new medical and surgical treatment options for boys and girls worldwide.

Contact Lens Center
The Contact Lens Center, under the direction of Dr. Barry A. Weissman, was created through a reorganization of the contact lens service in 2002 to provide patients with an expanded treatment program and facilities. The Center serves patients with all ophthalmic diagnoses that can be treated with contact lenses, including nearsightedness and farsightedness, regular and irregular astigmatism, and presbyopia. The Center also treats patients who have had eye diseases that are only optically or therapeutically approached with contact lenses (e.g., aphakia, keratoconus, post-corneal transplants, corneal trauma, and infection).

The Center is one of several across the nation that participated in the landmark CLEK (Collaborative Longitudinal Evaluation of Keratoconus) Study, sponsored by the National Eye Institute. Other research conducted by faculty at the Center includes contact lens wear complications, such as neovascularization, abrasion and corneal infection; and systems of oxygen supply to the corneas of contact lens wearers.
Diabetic Eye Disease and Retinal Vascular Center

Under the direction of Dr. Steven D. Schwartz, the Diabetic Eye Disease and Retinal Vascular Center provides diabetic patients with medical consultation and treatment services ranging from basic vision screening to the management of severe eye disease. Established almost a decade ago, the Center has since contributed significantly to the understanding, treatment, and prevention of diabetic eye disease. Currently, the focus is on innovation in technologies and techniques that will expand the standard of treatment, such as:

- new lasers and unique strategies for employing existing lasers,
- refinement of microsurgical techniques specific to diabetic eye diseases, and
- non-traditional treatment approaches.

The Center’s treatment philosophy is based upon the systemic nature of diabetes and stresses viewing the patient as a whole. Ophthalmologists take into consideration complications and requirements of diabetes that lie outside the field of ophthalmology, and a diabetes patient coordinator provides education and psychosocial support to reinforce disease prevention, treatment applications, and lifestyle changes. Treatment interventions include laser and ophthalmic surgery. Recognizing the special care needed for diabetics in any ophthalmic surgical situation, Center physicians perform all eye surgeries for diabetics, including those specific to the disease, as well as vitrectomy, cataract surgery, and retinal reattachment.

Eye Trauma and Emergency Center

The Eye Trauma and Emergency Center, under the direction of Dr. Robert Alan Goldberg, provides immediate response to ophthalmic emergencies through an eye trauma team available 24 hours a day for consultative, medical, and surgical care involving both primary and secondary ocular repairs. Ophthalmic emergency care has been provided by the UCLA Department of Ophthalmology since its inception. In 1980, the Eye Trauma and Emergency Center was formally established to encompass all levels of ocular trauma within the UCLA hospital system, including support to affiliated institutions. The Center offers complete evaluation and treatment of the traumatically injured eye, including vitreoretinal and/or orbital and ophthalmic plastic surgery, anterior segment surgery, and medical followup.

Patients are commonly referred to the Center for such ocular traumas as:

- ruptured globe,
- intraocular foreign bodies,
- acute orbital hypertension,
- retinal detachment,
- chemical burns of the cornea and conjunctiva, and
- acute vitreous hemorrhage.

Primary surgical repairs are performed immediately for new trauma while secondary repairs are usually scheduled. Less than half of patients experiencing ocular trauma require immediate surgery and, in many cases, treatment involves medical follow-up alone.
Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease
Established with a generous pledge from Gail and Gerald H. Oppenheimer, the Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease is committed to the discovery of agents and methods to prevent ophthalmic diseases. Areas of study include genetic and environmental factors that may cause eye disease, and pharmacologic and natural agents to prevent eye disease. The latter includes lifestyle modification, nutrition, vitamins, herbs, acupuncture, and massage. The following projects were funded by the Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease in 2007–2008:

Novel Locus for Retinitis Pigmentosa Associated with the Recently Identified 7R Protein
Novrouz Akhmedov, PhD
Assistant Research Ophthalmologist
Debora B. Farber, PhD, DPhhc
Karl Kirchgessner Professor of Ophthalmology

RNA Interference Targeting of the TGFBI Gene Transcript in Human Corneal Epithelial Cells as a Method to Inhibit Pathologic TGFBI Protein Deposition in the Corneal Dystrophies
Anthony J. Aldave, MD
Associate Professor of Ophthalmology

The Influence of Posterior Parietal Cortex on Visual Processing
James W. Bisley, PhD
Assistant Professor of Neurobiology

Characterization of an Avirulent Mutant of Toxoplasma Gondii, the Causative Agent of Ocular Toxoplasmosis
Peter J. Bradley, PhD
Assistant Professor of Microbiology, Immunology, and Molecular Genetics

Dietary Vitamin Intake and Open Angle Glaucoma: A Case-Control Study
Lucy Shen, MD
Fourth-year Resident of Ophthalmology
Anne L. Coleman, MD, PhD
Frances and Ray Stark Professor of Ophthalmology
Professor of Epidemiology

In addition to these projects, the Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease also directed funding to support the Institute’s Indigent Children and Families Ophthalmic Care Program, which provides much-needed ophthalmic medical care to economically disadvantaged children and adults.

Screen for Small Molecules that slow Dominant Optic Atrophy
Alexander M. van der Biek, PhD
Associate Professor of Biological Chemistry

The Laser Refractive Center is under the direction of Dr. David Rex Hamilton. Founded in 1991, the Center utilizes the skills of faculty specializing in refractive corneal surgery, including clinical and research applications of new laser technology. The Center is one of a few in the United States to pioneer investigations into laser eye surgery.

The Laser Refractive Center provides patients with all standard refractive procedures and offers emerging therapies as they become available. The most common forms of refractive vision correction are:

- Custom LASIK (laser in situ keratomileusis)
- Custom LASEK (laser epithelial keratomileusis)
- Presbyopia-correcting intraocular lens implant
- Custom PRK (photorefractive keratectomy)
- AK (astigmatic keratotomy)
- CK (conductive keratoplasty)
- Phakic intraocular lenses
- Intracorneal ring implant
Patients referred to the Laser Refractive Center undergo a complete ocular examination, including advanced corneal topographic maps to analyze corneal shape and identify conditions that may interfere with surgical correction. Candidates for laser surgery receive intensive education so that they understand the benefits, risks, and alternatives to surgery. Clinical trials for new refractive devices and techniques are open to patients on an ongoing basis. These include studies for the treatment of nearsightedness, farsightedness, and presbyopia that are not available in community-based laser refractive centers.

Macular Disease Center
The Macular Disease Center, under the direction of Drs. Steven D. Schwartz and Christine R. Gonzales, was created in 1994 in response to the growing, national incidence of macular degeneration.

The thrust of the Center is threefold:
• provide high-quality patient care, utilizing standard and developing treatments;
• offer associated rehabilitation services, such as low-vision aids and counseling, in order to enhance quality of life for patients; and
• promote collaborative research between clinicians and basic science researchers into the cause of macular disease.

Patients with the atrophic or dry form of macular disease are evaluated and their cases followed at the Macular Disease Center in conjunction with services offered by the Vision Rehabilitation Center. Patients with the exudative or wet form of macular disease receive an immediate angiogram to identify lesions. Treatment options for wet macular disease include participation in emerging therapies and clinical studies that are matched to the patient’s disease status. A patient coordinator is available to answer questions and provide information on an ongoing basis.

Ocular Inflammatory Disease Center
The Ocular Inflammatory Disease Center, under the direction of Dr. Gary N. Holland, was established in 1985 to provide patients with a broad spectrum of coordinated care that bridges specialties both within the Institute and outside the field of ophthalmology. The Center has a long history of participating in clinical studies and drug therapy investigations that have furthered the understanding and treatment of inflammatory eye diseases.

Center faculty were the first to describe cytomegalovirus (CMV) retinitis as an ophthalmic manifestation of AIDS. Their ongoing investigations have made the Ocular Inflammatory Disease Center a premier site of expertise for AIDS-related ophthalmic disease in the country. Additionally, the Center has world-renowned scientists and clinicians working on the research and treatment of uveitis. Other common inflammatory eye diseases treated in the Center are corneal ulcers, endophthalmitis, and autoimmune diseases of the cornea and ocular surface.

Comprehensive Cataract Center specialist, Dr. Kevin Miller, holds an educational forum about new treatments for cataracts.
Due to the frequency with which ocular inflammatory diseases are associated with systemic diseases, the Ocular Inflammatory Disease Center physicians routinely collaborate with non-ophthalmologists. During each evaluation, a determination is made regarding additional services or specialties that may be necessary as part of a patient’s care. The Center offers a Corneal Ulcer Service and an HIV Ocular Disease Service staffed by clinical coordinators to facilitate the integration of care with other medical specialties. If indicated, diagnostic testing ranging from cultures to biopsies to special ultrasound biomicroscopic examinations; complex medical treatments including immunosuppression and investigational drugs; and surgical intervention such as corneal, glaucoma, and retinovitreous procedures are also available.

Optic Neuropathy Center

Under the direction of Dr. Anthony C. Arnold, the Optic Neuropathy Center provides multidisciplinary consultation, diagnosis, and treatment for patients with complex diseases involving the optic nerve. Established in 1991, the Center incorporates specialized facilities and equipment for diagnostic testing and offers consultation from neuro-opthalmologists, orbital surgeons, neurologists, neuroradiologists, and neurosurgeons. The professional and technical expertise available to patients, many of whom are referred for definitive diagnosis, is unparalleled.

Patients referred to the Optic Neuropathy Center receive advanced diagnostic testing of the orbit and optic nerve to assist in evaluation. Extensive analysis of diagnostic data, together with information from the patient’s medical history and comprehensive physical examination, enables Center physicians to determine the nature of the disease and devise a treatment plan. Treatment may be medical or surgical depending on the nature of the referral and the patient’s disease status. As part of the Center’s clinical research effort, physicians are refining disease classifications along with diagnostic and treatment approaches to further the field of optic neuropathy and improve options for patients with these complex disorders.

Orbital Disease Center

The Orbital Disease Center, under the direction of Dr. Robert Alan Goldberg, brings multidisciplinary expertise to the treatment and study of orbital diseases arising from trauma, cancer, inflammation, and infection. The Center was founded in 1991, building upon an established, international reputation in the treatment of orbital diseases. Care is organized around a team of experts in ophthalmology, neuroradiology, neurosurgery, head and neck surgery, radiation oncology, and craniofacial surgery, who bring to the treatment of orbital diseases a depth of knowledge and experience not available elsewhere in Southern California.

Both medical and surgical management are employed in the Center; however, surgery is the primary treatment approach. Modern ophthalmic operating rooms within the Institute provide advanced instrumentation for ophthalmic surgery, oculoplastic surgery, orbital bony reconstruction, and orbital microsurgery. The treatment team performs procedures that are not usually available in the community, including orbital decompression microsurgery for orbital apical tumors, optic canal decompression, and bony reconstruction to address traumatic or congenital defects.
The Orbital Disease Center has an active program on Graves disease. New surgical techniques are evaluated for patients with Graves disease and basic science research is carried out to further understand the disease.

Vision Rehabilitation Center

The Vision Rehabilitation Center is under the direction of **Dr. Melissa W. Chun**, with **Dr. Steven D. Schwartz** as Medical Advisor. The Center was established to provide rehabilitation for patients with low vision and maximize their visual function and quality of life. Low vision is defined as best corrected vision of 20/70 or worse in the better eye. Though less restrictive than legal blindness (20/200 or worse) or total blindness, low vision can nevertheless limit daily life. Patients with low vision have a wide range of eye diseases, including age-related macular degeneration, diabetic retinopathy, glaucoma, corneal disease, and retinitis pigmentosa.

The Vision Rehabilitation Center provides assistance in the form of patient education and training, including reading and computer training, as well as consultation on a wide array of technologically advanced devices that can help patients adapt to their visual restrictions. Center services are customized for each patient’s individual needs, and may include instruction on simple techniques that optimize lighting and contrast, such as pouring coffee into a white mug, to instruction on sophisticated devices like a computer system that scans written materials and reads it back in a synthesized voice. One unique feature is a special “lending library” of low vision devices that enables patients to try them at home or in the office prior to purchase.
CLINICAL LABORATORIES

The Ophthalmology Clinical Laboratories provide precise measurements, photographs, and quantitative studies of the eye and the visual system. Quantitative information of this type enhances patient care by increasing the accuracy of diagnosis and enlarging the parameters employed to assess the clinical course and effectiveness of treatment. Additionally, the clinical laboratories expand the scope of treatment alternatives, promote clinical research, and generally augment the effectiveness of ophthalmic disease management. The laboratories are available to all ophthalmologists in the community.

Glaucoma Photography Laboratory
The Glaucoma Photography Laboratory, under the direction of Dr. Joseph Caprioli, takes a series of specialized photographs for new and follow-up glaucoma patients to assist the ophthalmologist in the management of patients with this disease. All of the photographic modalities capture varying aspects of the optic nerve fiber layer, a critical component in predicting, diagnosing, and monitoring glaucoma. Additional abnormalities associated with glaucoma and other eye diseases can also be measured and visually represented.

The GDX Nerve Fiber Analyzer utilizes polarized light in place of dilation to measure the thickness of the nerve fiber layer. This test is particularly useful in diagnosing new glaucoma. Heidelberg retinal tomography (HRT), using confocal laser light, measures additional parameters of the optic nerve and provides more information on the nerve fiber layer. Optical coherence tomography (OCT) utilizes reflected light to measure the nerve fiber layer as well as to measure macular holes as a staging procedure for surgical repair. An ophthalmic fundus camera photographs the optic nerve in stereo. The Laboratory is conducting clinical studies to evaluate the effectiveness of each photographic modality in terms of predictive accuracy and early detection of glaucoma.

Ocular Motility Clinical and Basic Science Laboratory
The Ocular Motility Clinical and Basic Science Laboratory, under the direction of Dr. Joseph L. Demer, records and quantitatively analyzes eye movement abnormalities resulting from ocular and neurological disorders, such as ocular myasthenia gravis. Four types of tests are performed. Electro-oculography (placing electrodes around the eye) evaluates nerve muscle palsies and lost or slipped eye muscles. The Hess test utilizes specialized eye charts and lenses to assist in the diagnosis of a number of problems, including double vision. Magnetic scleral search coil techniques are utilized in clinical research studies to detect fine movements not evident through normal visual examination. Another test involves the visual recording of eye movement using a video camera.

Basic science research is an integral component of the Laboratory. Using donor tissue, investigators further their understanding of eye movement as well as diseases of the eye, brain, and muscles, and related tissues of the inner ear. The research goals are twofold: To advance etiological theories of disease; and to develop new tests and new applications of existing tests that will aid in the diagnosis of eye diseases.

Ophthalmic Photography Clinical Laboratory
The Ophthalmic Photography Clinical Laboratory, under the direction of Dr. Tara A. Young, provides a wide array of photographic techniques important in patient care, research, and teaching. The primary purpose of ophthalmic photography in patient care is to record the present state of the eye, and in cases of abnormality, to establish a baseline and monitor the patient’s condition over time. Patient care services include photographic documentation of anterior segment diseases involving corneal problems like growths, infection, and trauma; photographs of ocular motility to record abnormalities in eye movement; fundus photography, which captures pictures of the retina; and diagnostic testing using fluorescein and indocyanine green angiography, which records the dynamics of blood flow in the eye. The Laboratory also supports the research and teaching activities of the Jules Stein Eye Institute by preparing and duplicating graphic materials for presentation and publication.

Ophthalmic Ultrasonography Clinical Laboratory
The Ophthalmic Ultrasonography Clinical Laboratory, directed by Drs. Anurag Gupta and Ralph D. Levinson, performs clinical examinations that are useful in diagnosing both ocular and orbital eye diseases. Patients are referred for ocular ultrasonic examination when internal structures of the eye cannot be seen directly or to differentiate known or suspected ocular pathology.
Diagnostic examinations include standardized A-scan, B-scan, and biomicroscopy. Standardized A-scan is useful in tissue differentiation and is commonly employed to diagnose ocular and orbital tumors, including choroidal melanoma. B-scan provides location and contour information and is particularly useful in differentiating vitreous membranes from retinal detachment. Ultrasound biomicroscopy provides exquisitely detailed, high-resolution views of the anterior segment of the eye and is a critical tool for the evaluation of ocular pathology, especially in opaque corneas. Biometry and lens calculation examinations are also performed in the Laboratory. Biometry measures the axial eye length, anterior chamber depth, and lens thickness; lens calculations are performed to determine the power of the lens implant for cataract patients.

Ophthalmology Diagnostic Laboratory
The Ophthalmology Diagnostic Laboratory, under the direction of **Dr. Joseph Caprioli**, offers four quantitative tests, including measurement of vision acuity and field of vision. The potential acuity meter (PAM) and the laser interferometer measure potential vision acuity, usually preparatory to cataract surgery for patients with complicating eye diseases such as macular degeneration. Patients with little potential visual acuity are often not candidates for surgery. The Goldmann perimeter utilizes manual perimetry to measure the field of vision (including peripheral vision). Patients with retinal degenerations are commonly referred for this type of test. Lastly, the endothelial cell count uses a high-powered microscope and video camera to photograph the inner layer of the cornea and corneal thickness. Patients with a low cell count do not have a healthy cornea and consequently may not be good candidates for surgery due to difficulty in healing.

Perimetry Laboratory
The Perimetry Laboratory, under the direction of **Dr. Joseph Caprioli**, performs visual field examinations that determine the sensitivity of central and peripheral vision. Examinations are conducted with advanced Humphrey automated perimetry equipment. Testing detects visual field deficits associated with certain kinds of eye diseases such as glaucoma, retinal disorders, and neuro-ophthalmic conditions. Utilizing pinpoints of light around a perimetry bowl, the test evaluates different areas of the field of vision. Test results are computerized and compared to a range of normal values by age group. Patterns of diminished fields of vision are related to specific eye diseases. Perimetry testing is employed for diagnostic purposes and to monitor visual field sensitivity over time, especially for glaucoma patients. Both standard and shortwave automated techniques are available, in addition to frequency-doubling perimetry and motion-detection perimetry.

Visual Physiology Clinical Laboratory
The Visual Physiology Clinical Laboratory, under the direction of **Drs. Michael B. Gorin** and **Steven Nusinowitz**, quantitatively evaluates the function of the retina and visual pathways. Patients are referred for functional testing to confirm a specific diagnosis or, in cases where the etiology is unknown, to rule out alternative possibilities. Electrophysiological tests, including the electroretinogram (ERG), electro-oculogram (EOG), and visually evoked potential test (VEP), record electrical signals from different layers of the visual system, much like an electrocardiogram (ECG) records electrical signals of the heart. Psychophysical tests, such as reading an eye chart, require the participation of the patient in specific tasks to evaluate visual functions like color blindness and contrast sensitivity. In many cases, both electrophysical and psychophysical tests are performed together in order to obtain the optimum amount of information for diagnosis.
TRAINING PROGRAMS

The Jules Stein Eye Institute and the UCLA Department of Ophthalmology jointly provide comprehensive training in ophthalmology and vision science to medical students, residents, and clinical and research fellows. Integrated, multi-faceted programming offers a stimulating environment for learning and for meeting degree and certificate requirements. A strong commitment to teaching by Institute faculty assures that ophthalmic education is maintained as a priority amidst the imperatives of patient care and research.

The training programs at the Institute encompass the gamut of ophthalmic and vision science education, representing every level of training and incorporating a full range of subjects in the study of the eye. The residency program is rated one of the top in the country. A large patient population with diverse vision problems, including many that require surgical intervention, offers innumerable training opportunities for both residents and clinical fellows. The availability of more than 15 research laboratories ensures a wide choice of vision science projects for all trainees. Pre- and post-doctoral research fellows particularly benefit from the wealth of new and unfolding research generated by vision scientists at the Institute.

UCLA Medical Student Program

Each academic year, the Department of Ophthalmology and the Institute extend instruction to UCLA medical students in their second, third, and fourth years of enrollment. Through lectures, demonstrations, discussions, and clinical practice, the students are afforded numerous training opportunities from which to gain knowledge and experience in ophthalmology.

All second-year medical students participate in a four-day program that encompasses the ophthalmology portion of Fundamentals of Clinical Medicine. The program consists of lectures, demonstrations, instructions on ophthalmic history-taking, and techniques for examination of the eye and related structures of the visual system. Students in small groups are assigned to clinical instructors for practical and personalized training in examination procedures and in the use of ophthalmic instruments. In this way, each student is exposed to major ophthalmic diseases, significant ophthalmic findings, and actual examination experience.

Third-year medical students complete a one-week rotation in ophthalmology. Instruction includes lectures, reading, computer-assisted learning, discussion, demonstrations, and patient examinations. The basic schedule for this rotation provides instruction in clinical ophthalmology and participation in departmental seminars and conferences. Students observe and participate in patient care and experience a concentrated period of basic instruction in ophthalmology.

The fourth-year medical student program is made up of various elective programs, including the Advanced Clinical Clerkship in Ophthalmology. Elective courses provide intensive exposure to clinical ophthalmology and basic visual sciences.

UCLA Ophthalmology Residency Program

The Department of Ophthalmology conducts an accredited three-year residency program for 21 residents; seven residents begin training each July. The full breadth of ophthalmology training is offered, including experience in general ophthalmology and in the following ophthalmic subspecialties: cornea-external ocular disease, glaucoma, neuro-ophthalmology, ophthalmic anesthesiology, orbital and ophthalmic plastic surgery, pediatric ophthalmology and strabismus, retinal disease, ophthalmic genetics, ocular inflammatory disease, ophthalmic oncology, and vision science.

Training incorporates the resources of several major medical centers in Los Angeles: UCLA Jules Stein Eye Institute; Harbor–UCLA Medical Center; Olive View–UCLA Medical Center; and the Veterans Affairs Greater Los Angeles Healthcare System at West Los Angeles and Sepulveda. Every resident has exposure to each medical center during the course of training, thereby ensuring clinical experience with a wide range of problems and patient populations. Certification by the American Board of Ophthalmology is a natural objective of the program.
Clinical Rotations

Clinical rotations at the Jules Stein Eye Institute include both general ophthalmology and subspecialties. In general, ophthalmology residents work as a team, handling clinics, emergencies (including overnight in-house call), and walk-in patients. They also serve as an ophthalmology consult service for inpatients in the Ronald Reagan UCLA Medical Center. Residents assigned to subspecialty service rotations are provided with intensive exposure to the various divisions within the Department, working closely with faculty members in a private practice environment. At the UCLA-affiliated medical centers, residents work in teams that provide both general and subspecialty patient care.

During the first year of training, residents are given a firm clinical foundation with an emphasis on general ophthalmology. They develop skills in refraction, diagnostic evaluations, and the medical management of ophthalmic problems. They also begin their surgery training and take an intensive rotation in ophthalmic pathology under the direction of a full-time ophthalmic pathologist. In the second year, residents begin in-depth training in all of the ophthalmic subspecialties. During the third year, they assume greater responsibilities for medical and surgical patient care and participate in supervision and teaching of medical students and first- and second-year ophthalmology residents. They also engage in administrative duties at the various medical centers.

Didactic Education

Residents receive didactic education in the classroom on an ongoing basis. Once each week, all residents attend a mandatory half-day program that includes faculty lectures that, over the course of the three-year program, cover each of the required subjects in the American Academy of Ophthalmology and Clinical Sciences Course. These lectures are followed by Grand Rounds, consisting of presentation and discussion of specific patient cases, and faculty lectures on clinical topics related to ophthalmic subspecialties.

Throughout the week, clinical conferences in ophthalmic subspecialties are held, where problems are presented and discussed. These conferences sometimes consist of visiting faculty lectures. Residents attend according to their rotations and interests. First-year residents also meet weekly with faculty members in a course designed specifically for their needs as new trainees. There are additional opportunities for residents to participate in any of the extensive continuing education programs conducted by the department and the Institute. All residents attend at least one annual meeting of the American Academy of Ophthalmology in their second or third year of the program.

Surgery Training

Residents begin to perform surgery in their first year of training and continue to operate throughout their residencies. Surgical cases are assigned commensurate with level of training and experience. First-year residents begin in the Institute’s Microsurgery Laboratory, learning basic techniques. The Laboratory is available to residents throughout their training. Residents first assist on selected surgical cases; by the end of their residencies, they are performing procedures independently.

First-year residents are (from left) Drs. Gina Yoo, Vicki Chan, Alex Yuan, Seongmu Lee, Monica Ralli, Le Yu, and Heather Chang.
Research
An understanding of and an appreciation for research are major prerequisites for assimilating future developments in ophthalmology. Accordingly, ophthalmic research is an integral component of residency training. Residents are expected to undertake independent investigation or to participate in an ongoing clinical or basic science research project in ophthalmology. They present the results of their work at the Jules Stein Eye Institute Clinical and Research Seminar during their second and third years of residency. They are also encouraged to report their studies at regional and national meetings and publish their results in scientific journals. Residents with special clinical or research interests have an opportunity to use elective time to increase their exposure to a particular area of ophthalmology. This time can be spent with full-time or volunteer faculty at UCLA or at other institutions.

EyeSTAR Program
The EyeSTAR (Specialty Training and Advanced Research) Program offers vision science training combined with an ophthalmology residency. Appointees complete a residency program leading to certification in ophthalmology, as well as laboratory research experience leading to a doctorate or postdoctoral training in the event that the trainee has a doctorate. EyeSTAR trainees work under the guidance of a faculty advisory panel representing the trainee’s clinical and research interests.

This unique program is especially geared to physicians committed to academic careers in ophthalmology, combining basic science with clinical practice in a six-year curriculum. Trainees select their faculty mentors and laboratories or research groups from a wide range of participants throughout the David Geffen School of Medicine at UCLA, College of Letters and Sciences, School of Public Health, Clinical Scholars Program, and RAND Graduate School.

The curriculum is a blend of graduate courses, laboratory research, and clinical training. The trainee is expected to commit three years to the residency program in ophthalmology and conduct vision science research for three years. Each trainee’s educational course is individualized depending on his or her background, interests, and needs. The goal is to generate leaders in ophthalmology who are investigators as well as practitioners—physicians who are as comfortable at the laboratory bench as in the examining or operating rooms.

UCLA Ophthalmology and Vision Science Fellowship Programs
The Jules Stein Eye Institute offers stipends to enable particularly well-qualified persons to receive and contribute to training and research at the predoctoral and postdoctoral levels. Fellows usually concentrate on specific areas of clinical ophthalmology or vision science.

Clinical fellowship training combines outpatient, inpatient, and surgical experience in an ophthalmic subspecialty. The fellow assumes increasing responsibility for patient care, under the supervision of faculty members responsible for the program. In addition to receiving instruction from faculty, the fellow instructs medical students and residents. Research is considered an important aspect of specialty training and a major prerequisite for assimilating future developments in ophthalmology. Clinical fellows are expected to undertake independent investigation or to participate in one of the
ongoing research projects in a basic or clinical field related to their specialty. Time is allotted appropriately for this experience, and its value is enhanced by careful supervision, availability of laboratory facilities, and access to technical assistance.

Vision science fellowship training is laboratory based and offers both predoctoral and postdoctoral opportunities to trainees in specific areas of vision science, or over a wide range of topics. Trainees work under the supervision of Institute faculty members who are engaged in basic science research and have active laboratories. They may work on individual projects or contribute to faculty projects. The scope and nature of each vision science fellowship is developed by the trainee and his/her faculty mentor.

Clinical and vision science fellowships offered by the Institute are described below.

Fellowship in Comprehensive Ophthalmology

The Comprehensive Ophthalmology Division offers a one-year fellowship under the direction of Dr. Kevin M. Miller. The fellowship prepares the graduates of residency training programs for careers in academic comprehensive ophthalmology, emphasizing the latest techniques in cataract surgery and combined cataract-refractive surgery. The learning experience is augmented by participation in the Annual Clinical and Research Seminar and Grand Rounds, and through interaction with members of the volunteer clinical faculty.

Clinical experience is gained by working under the program director in the comprehensive ophthalmology consultation suite and University Ophthalmology Associates. Surgical experience is gained by assisting the faculty preceptor, performing independent and supervised surgery, and supervising residents. Although cataract surgery accounts for the majority of surgery performed by the service, the fellow gains experience in many areas, including anterior segment surgery, laser refractive surgery, strabismus surgery, glaucoma filtration surgery, oculoplastics, and some retinal laser procedures.

Teaching is an integral part of the fellowship experience. The fellow is expected to be an instructor in an annual anterior segment surgery course, the lens and cataract basic science course, journal club, and other courses offered by the Comprehensive Ophthalmology Division. The fellow also is expected to instruct medical students and speak at community hospitals in the southern California area through arrangements with the Ronald Reagan UCLA Medical Center Visiting Speakers Program. The fellow presents cases at Grand Rounds and participates as an instructor or lecturer at courses offered during the annual American Society of Cataract and Refractive Surgery and American Academy of Ophthalmology meetings.

The fellow is expected to undertake several clinical research projects during the year. A microsurgery laboratory is available for surgical experiments. Collaboration with members of the vision science faculty can be arranged for projects of mutual interest. Research findings are submitted for presentation at national meetings and significant findings are submitted for publication. The fellow is required to present the results of one study at the Jules Stein Eye Institute’s Clinical and Research Day and Post-ARVO Seminar.
Fellowship in Contact Lens Practice
The one-year fellowship in contact lens, under the direction of Drs. Barry A. Weissman and Melissa W. Chun, offers optometrists and ophthalmologists advanced study in accordance with the program’s mission to
• provide state-of-the-art clinical training in contact lens care,
• foster scientific investigation of related topics in the study of contact lenses and corneal physiology,
• prepare individuals to deliver excellence in clinical care,
• encourage individuals in careers in academic or industrial settings, and
• promote professional relations between optometry and ophthalmology.

The contact lens fellow participates in patient care in the Jules Stein Eye Institute Contact Lens Center. Working with optometrists, ophthalmology residents, and ophthalmology fellows of various subspecialties provides excellent training opportunities for routine and specialized contact lens and comprehensive ophthalmology services in a multidisciplinary setting. Specialized services include complicated contact lens fittings for all types of astigmatism, aphakia (both adult and pediatric), presbyopia, post surgical corneas (including corneal grafts and keratorefractive surgery), irregular corneas secondary to trauma, and diseased corneas (including keratoconus and healed herpetic keratitis).

The fellow is encouraged to participate in ongoing research in contact lens care and to initiate personal research activities related to patient care and/or laboratory study. In this way, the fellow becomes versed in current scientific thought related to a variety of contact lens topics, such as immunology and microbiology of contact lens wear, contact lens optics, and oxygen delivery through contact lens materials. More than one day per week is allocated to research activities.

Fellowship in Cornea-External Ocular Diseases and Refractive Surgery
Under the direction of faculty members Drs. Anthony J. Aldave, Barly J. Mondino, Gary N. Holland, Sophie X. Deng, Barry A. Weissman, and David Rex Hamilton, in the Cornea and Uveitis Division, one-year fellowships are offered in the study of diseases of the cornea, external eye, anterior segment, and refractive surgery. Each faculty member has an area of specialization, creating a broad clinical and laboratory training experience for applicants who are preparing for an academic career in ophthalmology. Clinical experience consists of participation in the cornea faculty practices, including surgery, and assisting and/or directing the care of emergency cornea cases at the Jules Stein Eye Institute. Fellows work in the microsurgical laboratory at the Institute, developing their microsurgical skills, and assist in teaching these skills to ophthalmology residents. Under the direction of faculty, they also perform primary surgical procedures in the UCLA Laser Refractive Center. In addition to in-depth training at the Jules Stein Eye Institute, fellows supervise patient care in the cornea clinics at the West Los Angeles Veterans Affairs Healthcare Center and at Harbor-UCLA Medical Center. Experience and knowledge concerning contact lens fitting, contact lens management and related aspects of corneal physiology are also obtained.

Research may be clinically oriented or geared to basic science. Faculty are actively engaged in research at the Institute and collaborate with fellows on worthwhile projects of mutual interest. Fellows typically complete an original clinical or laboratory research project, and frequently co-author a book chapter or review during their training.

Fellowship in Glaucoma
Under the direction of Drs. Joseph Caprioli, Anne L. Coleman, JoAnn A. Giaconi, and Simon K. Law, the one- or two-year glaucoma fellowship provides clinical and laboratory experience in glaucoma diagnosis and management for physicians who are preparing for an academic career in ophthalmology. Clinical experience is gained by working with the faculty advisor in the consultation suite examining patients and participating in clinical and surgical management. Fellows assist in glaucoma surgical cases and perform surgery under the guidance of the program director. They work in the glaucoma microsurgical laboratory, participate in microsurgery courses for resident and practicing physicians, assist in the glaucoma clinic, and develop expertise in the various diagnostic techniques used in glaucoma treatment through preceptor-type relationships with faculty.

Fellows participate in glaucoma teaching performed at the Jules Stein Eye Institute and affiliated institutions, present cases at teaching rounds, and prepare presentations for regularly scheduled glaucoma conferences. They participate in teaching of staff, students, and residents through practical and didactic presentations, and improve their techniques of examination and interpretation of ancillary tests.

Fellows undertake at least one research project that can be accomplished during the fellowship period. This project, which may be a clinical study or an applied research project in the laboratory, is performed in cooperation with the faculty advisor.
Use of the excellent facilities in eye pathology is encouraged. Vision scientists, including biochemists, physiologists, pathologists, anatomists, and clinical ophthalmologists, are amenable to collaborating on worthwhile projects.

Fellowship in Neuro-Ophthalmology
The one-year fellowship in neuro-ophthalmology, under the direction of **Dr. Anthony C. Arnold**, involves a close preceptor-preceptee relationship, participation in teaching rounds, and work in the private consultation suite. The fellow is encouraged to develop rapport with members of the neurology and neurosurgery services at UCLA, and to become aware of neuro-ophthalmologic problems elsewhere in the hospital. The David Geffen School of Medicine at UCLA maintains major clinical and research programs in neurology, neurosurgery, and neuroradiology.

The fellow attends the weekly Neurology and Neurosurgery Grand Rounds, takes an active part in seeing relevant inpatient consultations throughout the medical center, and assists in selected surgical procedures of interest to neuro-ophthalmologists. Attendance at the weekly neuroradiology teaching conferences is encouraged. Participation in clinical research, such as studies of eye movement disorders and disturbances of visual pathways, is expected. Time is allotted for scientific reading and for research activities.

Fellowship in Orbital and Ophthalmic Plastic Surgery
Fellowships in orbital and ophthalmic plastic surgery, under the overall supervision of **Drs. Henry I. Baylis, Raymond S. Douglas, Robert Alan Goldberg, Jonathan Hoenig, and Norman Shorr**, provide special training for physicians who have completed ophthalmology residency training and are interested in specializing in orbital and adnexal disorders, and in aesthetic and reconstructive orbitofacial surgery. The Orbital and Ophthalmic Plastic Surgery Service joins efforts of the neuro-ophthalmology, neuroradiology, neurosurgery, and ocular pathology units in diagnosis and treatment of disorders affecting the optic nerve, orbit, and adjacent tissues (paranasal sinuses and intracranial tissues) that affect vision and ocular motility. The fellowship program is approved by the American Society of Ophthalmic Plastic and Reconstructive Surgery and the American Academy of Cosmetic Surgery.

The fellowship program includes ophthalmic plastic surgery outpatient consultation, inpatient activities, and surgical procedures at the Jules Stein Eye Institute and affiliated hospitals. Fellows participate extensively in the research activities of the Orbital and Ophthalmic Plastic Surgery Division. In addition to publishing results of original research in peer-reviewed scientific journals, fellows complete a formal thesis that partially satisfies the membership requirements of the American Society of Ophthalmic Plastic and Reconstructive Surgery.

As part of the Institute’s orbital and ophthalmic plastic surgery continuing education program, several surgical and dissection workshops, including a seminar on eyelid and orbit surgery, are held each year. The highlight of these workshops is the one-on-one teaching between faculty members and participants. Fellows are an integral part of these courses.

Fellowship in Pediatric Ophthalmology and Strabismus
Fellowships in pediatric ophthalmology and strabismus provide in-depth clinical and laboratory experience for individuals preparing for academic careers in ophthalmology. The division offers one-year fellowships, under the direction of **Drs. Arthur L. Rosenbaum, Sherwin J. Isenberg, and Joseph L. Demer** for U.S. licensed physicians as well as ophthalmologists from abroad.

Clinical experience for each fellowship consists of supervised participation in the ophthalmic care of pediatric patients seen at the Jules Stein Eye Institute, Harbor–UCLA Medical Center, and Olive View–UCLA Medical Center. Specific activities
Faculty Programs | Training Programs

include participation in University Ophthalmology Associates, the nursery and neonatal intensive care units, ophthalmic plastic and reconstructive surgery, and the pediatric retinal service. Other activities in pediatric ophthalmology include experience in the private consultation suites and participation in pediatric cases that are handled through other services.

Fellows may collaborate with vision scientists, including biochemists, physiologists, pathologists, and anatomists, on research projects of mutual interest.

Fellowship in Vitreoretinal Diseases and Surgery
The fellowship in vitreoretinal diseases and surgery is designed to provide an opportunity for appropriate clinical training and for clinical or vision science research related to retinal disease, over a two-year period. Special training includes the prevention, diagnosis, and treatment of retinal, choroidal, vitreous, and related ocular diseases. Under the direction of Drs. Steven D. Schwartz, Christine R. Gonzales, Michael B. Gorin, Allan E. Kreiger, Anurag Gupta, Jean-Pierre Hubschman, David Sarraf, Tara A. Young, and Bradley R. Straatsma, the fellowship consists of the following major components:

- diabetic retinopathy,
- diseases of the macula and retina,
- fluorescein angiography and retinal photography,
- hereditary retinal degenerations,
- ocular trauma,
- ophthalmic oncology,
- rhegmatogenous retinal disease and vitreoretinal surgery, and
- ultrasonography.

Fellowships in Vision Science
Predoctoral and postdoctoral fellowships in vision science are offered to individuals who have an interest in specific research areas being pursued by Institute faculty in highly specialized laboratory environments. These fellowships are supported either by individual funds available to Institute professors or as part of a special program offered under the auspices of a National Eye Institute Vision Science Training Grant. Predoctoral fellows are required to take a defined program of core courses and become rapidly acquainted with the fundamentals of vision research. They carry out their eye-related research and obtain their doctorates in about six years, receiving training in the methods of neurobiology, neurosciences, pharmacology, chemistry, biochemistry, molecular biology, molecular genetics, cell biology, biomechanics, or visual physiology, according to their individual needs and interests. Fellows are required to present their research at informal and formal seminars, and are encouraged to participate in national and international meetings and to write and publish scientific papers. They gain a broad background in the vision sciences by interacting with members of adjacent laboratories and collaborating with faculty members other than their own preceptors.

Postdoctoral research fellowships are offered for one to three years. Each one is unique with research programs established according to mutual agreement between trainees and mentors. Research areas for postdoctoral fellows include molecular biology, genetics, biophysics, biomechanics, cell biology, eye development, and biochemistry. Upon completion of their fellowships, trainees usually pursue careers in academia or industry.

International Fellowship and Exchange Program
To promote and encourage research and education interaction with ophthalmology institutions throughout the world, the Jules Stein Eye Institute offers an International Ophthalmology Fellowship and Exchange Program consisting of one- to two-year fellowships under the supervision of specific Institute faculty. Candidates for these international fellowships are nominated by prestigious institutions outside the United States and often hold academic positions within their own countries. Fellows participate in the clinical and research activities of ophthalmic-subspecialties according to their training needs.
VOLUNTEER AND CONSULTING FACULTY

VOLUNTEER FACULTY
IN OPHTHALMOLOGY

Clinical Professor
of Ophthalmology

Henry I. Baylis, MD
Founding Chief of the
Orbital and Ophthalmic Plastic
Surgery Division

Bruce B. Becker, MD
Michael S. Berlin, MD
Norman E. Byer, MD
William P. Chen, MD
Glenn O. Dayton, MD
Paul D. Deiter, MD
Donald E. Dickerson, MD
Richard Elander, MD
Leland M. Garrison, MD
John D. Hofbauer, MD
Kenneth J. Hoffer, MD
C. Richard Hulquist, MD
Barry M. Kerman, MD
Roger A. Kohn, MD
Howard R. Krauss, MD
Benjamin C. Kwan, MD
Jeremy E. Levenson, MD
Ezra Maguen, MD
Samuel Masket, MD
Albert T. Milauskas, MD
Irvin S. Pilger, MD
George B. Primantis, MD
Yaron S. Rabinowitz, MD
Teresa O. Rosales, MD
Robert J. Schechter, MD
Stephen S. Seiff, MD
Alan L. Shabo, MD
Norman Shorr, MD
Robert M. Sinskey, MD
Sherwin H. Sloan, MD
Roger W. Sorenson, MD
Howard H. Stone, MD

Associate Clinical Professor
of Ophthalmology

Charles R. Barnes, MD
Gerald J. Barron, MD
Arnold L. Barton, MD
Louis Bernstein, MD
W. Benton Boone, MD
Andrew E. Choy, MD
Melissa W. Chun, OD
Peter J. Cornell, MD
Uday Devgan, MD
Paul B. Donzis, MD
Robert E. Engstrom, Jr., MD
Donald S. Fong, MD, MPH
Donald I. Goldstein, MD
Michael J. Groth, MD
Thomas A. Hanscom, MD
Andrew Henrick, MD
Edwin P. Hill, MD
Eugene F. Hoffman, Jr., MD
David F. Kamin, MD
Stanley M. Kopelew, MD
Joseph N. Lambert, MD
Jonathan I. Macy, MD
Robert K. Maloney, MD
M. Gene Matzkin, MD
Joan E. McFarland, MD
James W. McKinzie, MD
Alan L. Norton, MD
Leon G. Partamian, MD
John F. Paschal, MD
Gene J. Pawlowski, MD
Sidney W. Penn, MD
Michael Reynard, MD
David S. Robbin, MD
David E. Savar, MD
Timothy V. Scott, MD
James F. Sharp, MD
Albert Sheffer, MD
James D. Shuler, MD
Yossi Sidikaro, PhD
Matthew Sloan, MD
Ronald J. Smith, MD
Alfred Solish, MD
William C. Stivelman, MD
Hector L. Sulit, MD
Kamal A. Zakka, MD

Assistant Clinical Professor
of Ophthalmology

David H. Aizuss, MD
Malvin B. Anders, MD
Richard K. Apt, MD
Reginald G. Ariyasu, PhD
Arthur A. Astorino, MD
Mark A. Baskin, MD
Arthur Benjamin, MD
Katherine L. Bergwerk, MD
Betsy E. Blechman, MD
Cynthia A. Boxrud, MD
Amarpreet S. Brar, MD
Harvey A. Brown, MD
Almira W. Cann, PhD
Arnett Carraby, MD
Andrew M. Chang, MD
Thomas B-H. Choi, MD
Milan W. Chu, MD
Robert A. Clark, MD
Charles A. Cooper, MD
Yadavinder P. Dang, MD
Jonathan M. Davidorf, MD
John L. Davidson, MD
Sanford S. Davidson, MD
Louise Cooley Davis, MD
Farid Eghbali, OD
Troy R. Elander, MD
Naomi L. Ellenhorn, MD
Calvin T. Eng, MD
Joseph M. Faust, MD
Doreen T. Fazio, MD
Sanford G. Feldman, MD
David R. Fett, MD
Laura E. Fox, MD
Ron P. Gallemore, MD
George H. Garcia, MD
Kathryn M. Gardner, MD
Leslie C. Garland, MD
W. James Gealy, Jr., MD
Lawrence H. Green, MD
Man M. Singh Hayreh, MD
Matthew L. Hecht, MD
Jonathan A. Hoenig, MD
Jeffrey Hong, MD
Morton P. Israel, MD
Steven J. Jacobson, MD
Véronique H. Jotterand, MD
J. David Karlin, MD
David S. Katzin, MD
James F. Kleckner, MD
Jerome R. Klein, MD
Craig H. Kliger, MD
Howard E. Lazerson, MD
Brian L. Lee, MD
Steven Leibowitz, MD
Robert T. Lin, MD
Joanne E. Low, MD
Bryant J. Lum, MD
Michael C. Lynch, MD
M. Polly McKinstry, MD
Ashish M. Mehta, MD
George L. Miller, MD
Kenneth J. Miller, MD
David R. Milstein, MD
Ronald L. Morton, MD
Lee T. Nordan, MD
Roger L. Novack, PhD
James H. Peace, MD
Gilbert S. Perlman, MD
Cheryl J. Powell, MD
Firas Rahhal, MD
George M. Rajacich, MD
Jay J. Richlin, MD
Laurence N. Roer, MD
Gerald S. Sanders, MD
Barry S. Seibel, MD
Meryl Shapiro-Tuchin, MD
David M. Shultz, MD
Appendices | Volunteer and Consulting Faculty

Eliot B. Siegel, MD
Lance M. Siegel, MD
John D. Slaney, MD
Robert J. Smyth-Medina, MD
Kenneth O. Sparks, MD
Kenneth D. Steinsapir, MD
Sadiqa Stelzner, MD
Robert C. Tarter, MD
Debra G. Tennen, MD
Teddy Y. Tong, MD
Sterling M. Trenberth, MD
Robert C. Tudor, MD
Henry E. Ullman, MD
Nancy S. Wang, MD
Tay J. Weinman, MD
Irwin S. Weiss, MD
Sidney J. Weiss, MD
Scott Whitcup, MD
David L. Williams, MD
Jeffrey V. Winston, MD
David L. Wirta, MD
Barry J. Wolstan, MD
Wilson C. Wu, MD, PhD
Michael C. Yang, MD
Richard H. Yook, MD
Peter D. Zeegen, MD

Clinical Instructor in Ophthalmology
John D. Bartlett, MD
J. Kevin Belville, MD
Eduardo Besser, MD
Maria Braun, MD
Neil D. Brouman, MD
Stephen S. Bylsma, MD
Joseph H. Chang, MD
John J. Darin, MD
Paul J. Dougherty, MD
Daniel Ebroot, MD
Brad S. Elkins, MD
Satvinder Gujral, MD
Lawrence M. Hopp, MD, MS
John A. Hovanesian, MD
Aarchan Joshi, MD
Anisha J. Judge, MD
Rajesh Khanna, MD
Julie A. King, MD
Mark H. Kramar, MD
Daniel Krivoy, MD
Laurie C. McCall, MD
David Paikal, MD
Alpa A.S. Patel, MD
Jayantkumar Patel, MD
Susan Ransome, MD
Steven H. Rauchman, MD
Robert A. Schwarcz, MD
Mark Silverberg, MD
Sharon N. Spooner-Dailey, MD
Dana P. Tannenbaum, MD
William L. Trotter, MD
Mathew Wang, MD
Peter H. Win, MD
Patrick Yeh, MD

Professor, Departments of Chemistry & Biochemistry and Biological Chemistry Molecular Biology Institute
Alan M. Fogelman, MD
Castera Professor and Executive Chair, Department of Medicine
Alan D. Grinnell, PhD
Professor of Physiology and Physiological Science; Director, Jerry Lewis Neuromuscular Research Center; Director, Ahmanson Laboratory of Neurobiology
Vincente Honrubia, MD, DMSc
Professor Emeritus of Surgery, Division of Head and Neck Surgery; Director, Victor Goodhill Ear Center
Sherman M. Mellinkoff, PhD
Professor Emeritus of Medicine; Former Dean, UCLA School of Medicine
C. Kumar Patel, PhD
Professor, Department of Physics and Astronomy
Leonard H. Rome, PhD
Senior Associate Dean for Research; Professor of Biological Chemistry
Peter C. Whybrow, MD
Judson Braun Professor and Executive Chair, Department of Psychiatry and Biobehavioral Sciences; Director, Neuropsychiatric Institute; Physician in Chief, Neuropsychiatric Hospital

CONSULTING MEMBERS OF THE JULES STEIN EYE INSTITUTE
Robert W. Baloh, MD
Professor of Neurology and Surgery (Head and Neck)
Ferdinand V. Coroniti, PhD
Professor, Department of Physics and Astronomy
David Eisenberg, DPhil
Investigator, Howard Hughes Medical Institute; Director, UCLA-DOE Institute for Genomics and Proteomics;

Volunteer clinical faculty members (from left) Drs. Andrew Henrick, Morton Israel, and Jonathan Macy received the 2008 Senior Honor Award for providing more than 25 years of outstanding service to the UCLA Department of Ophthalmology.
RESIDENTS AND FELLOWS

RESIDENTS

Third-Year Residents, 2005–2008
Lauren A. Eckstein, MD, PhD
F. Jacob Khoubian, MD
Yvonne Ou, MD
Stacy L. Pineles, MD
Lucy Q. Shen, MD
Karen Shih, MD
Marc H. Shomer, MD, PhD

Second-Year Residents, 2006–2009
Allen Chiang, MD
Allen Hu, MD
Ahmad M. Mansury, MD
Pradeep S. Prasad, MD
Sumit P. Shah, MD
Tanvi M. Shah, MD
Tania Tai, MD
Barbara S. Yates, MD

First-Year Residents, 2007–2010
Vicki K. Chan, MD
Heather S. Chang, MD
Seongmu Lee, MD
Monica Ralli, MD
Gina L. Yoo, MD
Le Yu, MD

EYESTAR TRAINEES

Alex Yuan, MD, PhD
Shaheen P. Karim, MD
Helen Lee, MD

CLINICAL FELLOWS

Corneal and External Ocular Diseases and Refractive Surgery
My Hanh T. Nguyen, MD
Jared R. Younger, MD, MPH

Glaucoma
Priya V. Desai, MD
Ryan Taban, MD

Orbital and Ophthalmic Plastic Surgery
Ronald Mancini, MD
Mehryar (Ray) Taban, MD

Pediatric Ophthalmology and Strabismus
Tina Rutar, MD
Adrienne Ruth, MD

Uveitis and Inflammatory Eye Disease
Peter J. Kappel, MD

Vitreoretinal Diseases and Surgery
Robert Coffee, MD
Eric S. Lee, MD
Scott C. Oliver, MD
Shantan Reddy, MD

Specialized Clinical Fellow
Marisa Chung, OD (Contact Lens)
Appendices | Residents and Fellows

INTERNATIONAL FELLOWS

Comprehensive Ophthalmology
Qiong-yan Tang, MD
Daye, China

Cornea–External Ocular Disease
Kamal Khairidzan, MD
Kuala Lumpur, Malaysia

Glaucoma
Jaehong Ahn, MD
Seoul, South Korea
Yasunari Munemasa, MD, PhD
Kawasaki, Japan

Orbital and Ophthalmic Plastic Surgery
Benjamin Burt, MD
Melbourne, Australia

Pediatric Ophthalmology
Noa Ela-Dalman, MD
Tel-Aviv, Israel
Atiporn Thuangtong, MD
Bangkok, Thailand

Vitreoretinal Diseases
J.P. Hubschman, MD
Marseille, France

POSTDOCTORAL RESEARCH FELLOWS

Tanya Diemer, PhD
Zhen Hua Ding, PhD
Oluwatoyin Fafowara, MD
Mark Fleissner, PhD
Rajendra Kumar Gangalum, PhD
Louise Hughes, PhD
Catherine Hwang, MD
Zhe Jing, PhD
Riki Kawaguchi, PhD
Joanna Kaylor, PhD
Miyeon Kim, PhD
Srinivas Koduru, PhD
Vanda Lopes, PhD
Shawn Morales, PhD
Kun Do Rhee, PhD
Kiyo Sakagami, PhD
Veena Theendakara, PhD
Amy Tien, PhD
Depti Trivedi, PhD
Ned Van Eps, PhD
Jamei Yu, PhD
Quan Yuan, PhD

PREDOCTORAL RESEARCH FELLOWS

Tammy Beran
Michael Bridges
Ling Chen, MD
Robert Kent Fanter
Yi-Wen (Evan) Hsieh
Gergana Kodjebacheva
Carlos Lopez
Sheryll Mangahas
John McCoy
Shawn Morales
Anita Narasimhan
Caroline Sham
Dora Toledo Warshaviak
Jang (Lawrence) Yoo
Alejandra Young

International pediatrics fellow Dr. Noa Ela-Dalman (center) won the 2008 American Association for Pediatric Ophthalmology and Strabismus Research Award. The award-winning project was co-authored by Drs. Arthur Rosenbaum (left), Joseph Demer (right), and Federico Velez (not shown).
ENDOWED PROFESSORSHIPS, FELLOWSHIPS, AND OTHER FUNDS

ENDOWED PROFESSORSHIPS

Ahmanson Chair in Ophthalmology
Established in 2005 by The Ahmanson Foundation, as an administrative chair for the Retina Division Chief to further research, education, and clinical care programs
Steven D. Schwartz, MD
2007–Present

Leonard Apt Chair in Pediatric Ophthalmology
Established in 2004 by Dr. Leonard Apt, Professor Emeritus of Ophthalmology and Founding Director of the Division of Pediatric Ophthalmology and Strabismus, with a gift from the trust of Frederic G. Rappaport, Dr. Apt’s nephew
Joseph L. Demer, MD, PhD
2005–Present

Karen and Frank Dabby Endowed Chair in Ophthalmology
Established in 2007 as a term chair to support the activities of a distinguished faculty member in the area of orbital disease
Robert Alan Goldberg, MD
2008–Present

Charles Kenneth Feldman Chair in Ophthalmology
Established in 1982 in memory of Charles Kenneth Feldman, an entertainment industry executive
Robert D. Yee, MD
Professor 1984–1987
Hillel Lewis, MD
Scholar 1989–1993
Gabriel H. Travis, MD
2001–Present

Laraine and David Gerber Chair in Ophthalmology
Established in 1998 as a term chair by Mr. and Mrs. Gerber and converted to a permanent appointment chair in 2007 with an additional pledge
Joseph L. Demer, MD, PhD
2000–2004
Sherwin J. Isenberg, MD
2004–Present

Brindell and Milton Gottlieb Chair in Pediatric Ophthalmology
Established in 2005 as an administrative chair for the Division of Pediatric Ophthalmology and Strabismus, in honor of Dr. Arthur L. Rosenbaum, and will change to the Arthur L. Rosenbaum, MD, Chair in Pediatric Ophthalmology, upon his retirement from UCLA
Arthur L. Rosenbaum, MD
2008–Present

Dolly Green Chair in Ophthalmology
Established in 1980 by Dorothy (Dolly) Green
Dean Bok, PhD
1984–Present

Ernest G. Herman Endowed Chair in Ophthalmology
Initiated in 2007 by Mr. Ernest G. Herman to support a vision-scientist or a clinician-investigator
Joseph Caprioli, MD
2004–Present

Karl Kirchgeissner Foundation Chair in Vision Science
Established in 2002 as a term chair by a colleague of Dr. Jules Stein to promote basic science research initiatives of the Department of Ophthalmology
Debora B. Farber, PhD, DPhhc
2002–Present

Kolokotrones Chair in Ophthalmology
Established in 2004 by Wendy and Theo Kolokotrones to support the teaching and research of a cataract surgeon and scientist
Kevin M. Miller, MD
2005–Present

Grace and Walter Lantz Endowed Chair in Ophthalmology
Established in 1991 as a term chair by Mr. and Mrs. Lantz
J. Bronwyn Bateman, MD
Grace and Walter Lantz Scholar 1993–1995
Sherwin J. Isenberg, MD
Professor, 1996–2004
Joseph L. Demer, MD, PhD
Professor, 2004–2005

David May II Chair in Ophthalmology
Established in 1998 as a term chair by the family of David May II, a founding member of the Institute’s Board of Trustees, to perpetuate, in memoriam, Mr. May’s association with the Jules Stein Eye Institute, and converted to a permanent chair with an additional pledge from the Wilbur May Foundation
Gary N. Holland, MD
1999–2004
Joseph Caprioli, MD
2004–Present

Oppenheimer Brothers Chair in Ophthalmology
Established in 2002 as a term chair by the Oppenheimer Brothers Foundation
Joseph Horwitz, PhD
2003–Present
Appendices | Endowed Professorships, Fellowships, and Other Funds

Harold and Pauline Price Chair in Ophthalmology
Established in 2000 by the Louis and Harold Price Foundation and converted to a permanent appointment chair in 2006 with an additional pledge
Michael B. Gorin, MD, PhD
2006–Present

Jerome and Joan Snyder Chair in Ophthalmology
Established in 2007 to support the activities of a distinguished faculty member who directs the Ophthalmology Residency Program, ensuring that UCLA's accredited program continues to offer rigorous and comprehensive instruction for individuals of the highest caliber

Frances and Ray Stark Chair in Ophthalmology
Established in 1992 as a term chair by the Fran and Ray Stark Foundation and converted to a permanent appointment position in 2007 with an additional commitment
Joseph Caprioli, MD
1997–2004
Anne L. Coleman, MD, PhD
2004–Present

Jules Stein Chair in Ophthalmology
Established in 1982 as a memorial tribute to Dr. Jules Stein by his many friends, with the leadership of Samuel Goldwyn, Jr.
Wayne L. Hubbell, PhD
1983–Present

Jack H. Skirball Endowed Chair in Ocular Inflammatory Disease
Initiated in 2007 by the Skirball Foundation in honor of Jack H. Skirball’s longstanding friendship with Dr Jules Stein and Lew Wasserman

Bradley R. Straatsma, MD, Chair in Ophthalmology
Established in 1994 to honor Bradley R. Straatsma, MD, Founding Director of the Jules Stein Eye Institute
Bartly J. Mondino, MD
2000–Present

Vernon O. Underwood Family Chair in Ophthalmology
Established in 1995 as a term chair by Adrienne Underwood in memory of her late husband, Vernon O. Underwood
Gary N. Holland, MD
2004–Present

Edith and Lew Wasserman Chair in Ophthalmology
Established in 1977 by Edie and Lew Wasserman to honor Dr. Jules Stein
Manfred Spitznas, MD
1979–1981
Bartly J. Mondino, MD
Ben J. Glasgow, MD
2003–Present

ENDOWED FELLOWSHIPS

Rosalind W. Alcott Fellowship
Established in 1978 for the training of outstanding postdoctoral fellows

Leonard Apt Fellowship
Established in 2002 by Leonard Apt, MD, Founding Chief of the Pediatric Ophthalmology and Strabismus Division, to support outstanding clinical fellows in the field of pediatric ophthalmology and strabismus
Tina Rutar, MD
2007–2008

The Thelma and William Brand Director's Fund
Established in 2004 with a trust from William F. Brand to benefit worthy students at the Jules Stein Eye Institute
Shantan Reddy, MD
2007–2008

Steven and Nancy Cooperman Fellowship Fund
To support eye research and education, with emphasis on clinical ophthalmology
Jared Younger, MD
2007–2008

Klara Spinks Fleming Fellowship Fund
Established in 1985 for the support of cataract research

Frances Howard Goldwyn Fellowship
Established in 1977 by Samuel Goldwyn, Jr., with gifts from Mrs. Goldwyn’s estate and Dr. and Mrs. Jules Stein
Mehryar Taban, MD
2007–2008

Elsa and Louis Kelton Fellowship
Endowed in 1982 to support postdoctoral research and training
Tina Rutar, MD
2007–2008

Bert Levy Research Fellowship Fund
Established in 1995 to enhance the educational opportunities of vision science scholars and advance research in neuro-ophthalmology

David May II Fellowship Fund
To support advanced study and research in ophthalmology and vision science
Ronald Mancini, MD
2006–2008
Abe Meyer Memorial Fellowship Fund
Established in 1969 to support clinical fellows at the Institute
Eric S. Lee, MD
2006–2008
Scott C. Oliver, MD
2006–2008
Shantan Reddy, MD
2007–2008

Lee and Mae Sherman Fellowship Fund
Established in 1971 to support postdoctoral fellows
Priya Desai, MD
2007–2008

Jules Stein Research Fellowship
Established in 1982 to honor the memory of Charles Kenneth Feldman
Robert Coffee, MD
2007–2008
Adrienne Ruth, MD
2007–2008

Lee and Mae Sherman Foundation Fund
Established in 1971 to support clinical fellows

Adele Stein Miller Research Fellowship
Established in 1977 as a tribute to Dr. Jules Stein’s sister
My Hanh Nguyen, MD
2007–2008

Harold and Pauline Price Fellowship
To support research and education in ophthalmology and vision care

Frederic G. Rappaport Fellowship in Retina/Oncology
Established in 2004 by Mrs. Jeanne A. Rappaport, as a memorial to her son, Frederic
Scott C. Oliver, MD
2007–2008

Vernon O. Underwood Family Fellowship Fund
Established in 1993 to support clinical fellows
Ryan Taban, MD
2007–2008

Elsie B. Ballantyne UCLA Foundation Fund
Established in 1971 for research related to glaucoma

Virginia Burns Oppenheimer Endowment Fund
Established in 1998 with memorial gifts as a tribute to Virginia Burns Oppenheimer for interior maintenance projects

Card Family Research Fund
Established in 1998 for vision research with an emphasis on corneal disease

Edward and Hannah Carter Fund
Established in 1990 for continuing medical education

Anthony Eannelli Fund
Established in 1998 with a bequest from the estate of Anthony Eannelli for research into the treatment and cure of macular degeneration

Katherine L. Gardner Research Fund
Established in 1984 for vision research

Emma B. Gillespie Fund
Established in 1968 for the development and enrichment of teaching, research, and patient care programs

Audrey Hayden-Gradle Trust
Established in 1994 with an unrestricted trust

Marie and Jerry Hornstein Family Endowed Macular Degeneration Research Fund
Established in 2007 by Mr. and Mrs. Hornstein to support age-related macular degeneration under the direction of Steven D. Schwartz, MD

ENDOWMENTS FOR RESEARCH, EDUCATION, AND PATIENT CARE

The Annenberg Foundation Fund
Established in 2003 for follow-up treatment of patients who have benefited from The Annenberg Foundation’s direct-service programs for children and adults

J. Richard Armstrong and Ardis Armstrong Fund
Established in 2007 from a generous gift from the J. Richard Armstrong and Ardis Armstrong Revocable Living Trust to support degenerative eye diseases

Elsie B. Ballantyne Regents Fund
For educational and patient care projects within the Glaucoma Division

Dr. Jack Rubin Memorial Fellowship
To support postdoctoral fellows

Sanford and Erna Schulhofer Fellowship Fund
To support postdoctoral research and training in vision science
Michael Huffington Ophthalmology Scholarship Fund
Established in 1994 for educational activities within the Retina Division

Stella F. Joseph Fund
Established in 1982 for the cataract research of Bradley R. Straatsma, MD

JSEI Maintenance Fund
For special maintenance of the exterior marble and other unique characteristics of the Jules Stein Eye Institute buildings

Herman King Fund
Established in 1993 with a bequest from Herman King to support age-related cataract research under the direction of Joseph Horwitz, PhD

The Karl Kirchgessner Foundation Ophthalmology Endowment Fund
Established in 1984 for promising areas of vision science research

Sara Kolb Memorial Fund
Established in 1984 for research in pediatric ophthalmology

John and Theiline McCone Macular Disease Research Fund
Established in 1989 for macular disease research

Memorial Library Funds
In honor of General and Mrs. H.L. Oppenheimer, Jerome T. Pearlman, and Susan Stein Shiva

Chesley Jack Mills Trust
Established in 1990 for vision research with special emphasis on glaucoma associated with corneal disease and/or uveitis

Patricia Pearl Morrison Research Fund
Established in 1982 for the investigation of retinal structure and disease

Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease Endowment Fund
Mr. and Mrs. Oppenheimer established this endowment in 2007 to support the Center’s mission to discover agents and methods to prevent ophthalmic diseases and disorders

Emily G. Plumb Estate and Trust
Established in 2003 to support research for the prevention and cure of blindness

Harold and Pauline Price Retina Research Fund
Established in 2000 by the Louis and Harold Price Foundation for retina research under the direction of Steven D. Schwartz, MD

Herb Ritts, Jr. Memorial Vision Fund
Established in 2004 by Herb’s family and friends to provide monies to support AIDS-related vision care, research, and education

Albert Sarnoff Endowed Cataract Fund
Established in 2008 to support cataract research and education programs under the direction of Kevin M. Miller, MD

Raymond and Ruth Stotter Vision Science Research Fund
Established in 1990 for vision science research

Bradley R. Straatsma Research Fund
Established in 1988 for research related to ophthalmology under the direction of Bradley R. Straatsma, MD

Barbara P. Taylor Fund
For the vision science program

UCLA Center for Eye Epidemiology
Established in 1997 by The Ahmanson Foundation to support research and clinical studies to further knowledge of the development, treatment, and prevention of eye disease

Paul J. Vicari Endowed Cataract Research Fund
Established in 2006 by the Resnick Family Foundation to honor Paul J. Vicari, will support cataract research and educational activities currently under the direction of Kevin M. Miller, MD, Professor of Clinical Ophthalmology at UCLA

Uncle Claude Fund
Established in 1972 for vision care services of needy children and adults through the UCLA Mobile Eye Clinic

Anne H. West Estate Fund
Established in 1987 for medical research in eye diseases and disorders and for related equipment and supplies

Daniel B. Whipple Fund
Established in 1982 for the study of the transplantation of eye tissue
EDUCATIONAL OFFERINGS

OPHTHALMOLOGY AND VISION SCIENCE TRAINING PROGRAMS

Thirteenth Annual Vision Science Conference
September 7–9, 2007

Sponsored jointly by the Jules Stein Eye Institute and the National Eye Institute, the Annual Vision Science Conference brings together pre- and postdoctoral research fellows and faculty from the Jules Stein Eye Institute to discuss a wide range of topics in vision science research.

Ophthalmology Basic and Clinical Science Course

Course Chairman
Bartly J. Mondino, MD

This course is a major segment of the education program for ophthalmology residents, as well as a review course for ophthalmologists. Sections are presented each year in a rotation designed to provide complete review of all sections in a three-year period. First-year residents participate in a more intensive curriculum in order to obtain a comprehensive foundation of ophthalmologic knowledge. In 2007–2008, the following course components were offered:

Fundamentals and Principles of Ophthalmology
September 5–October 24, 2007
Joseph L. Demer, MD, PhD
Section Chairman

Optics Refraction and Contact Lenses
October 31–January 2, 2008
Barry A. Weissman, OD, PhD
Section Chairman

Ocular Inflammation and Uveitis
January 9–March 12, 2008
Gary N. Holland, MD
Section Chairman

Neuro-Ophthalmology
March 19–June 11, 2008
Anthony C. Arnold, MD
Section Chairman

Ophthalmology Clinical Conferences

Coordinators
Anthony C. Arnold, MD
Gary N. Holland, MD

The Clinical Conferences are offered in conjunction with the regular weekly Ophthalmology Basic and Clinical Science Course. These conferences are accompanied by lectures in the Ophthalmology Specialty Service Program, in which all faculty members of the Institute participate on a rotating basis, and the Invited Lecture Series, which features guest speakers from other UCLA Departments, from across the United States, and from abroad. The Clinical Conferences review patient care activities of the UCLA Department of Ophthalmology, present general topics in ophthalmic science, and promote discussion of relevant aspects of ophthalmic pathology and pharmacy.

Vision Science Seminar Series

Coordinator
Suraj P. Bhat, PhD

This seminar series, conducted throughout the academic year, allows faculty within the Jules Stein Eye Institute to present their research to other members of the Institute, thereby fostering the exchange of knowledge and cooperation. In addition, the series frequently includes presentations by eminent visitors to the UCLA campus.

Phacoemulsification Course
September 9, 2007
Course Director
Kevin M. Miller, MD

This course is a key component of the residency training program, as well as a resource for practicing ophthalmologists. Both classroom and laboratory instruction are offered, covering in detail the procedural and anatomical components of modern sutureless phacoemulsification.

Study Groups
Focusing on specific topics in clinical ophthalmology, study groups meet regularly under the leadership of faculty members who are acknowledged specialists in their respective fields. The study groups are an integral part of the residency and clinical fellowship training programs and serve as an informal resource for practicing ophthalmologists in the community.

HIV-Related Eye Disease Study Group
At monthly conferences, Gary N. Holland, MD, and Susan S. Ransome, MD, meet with infectious disease specialists from the UCLA Center for AIDS Research and Education (CARE) to discuss new developments in the management of cytomegalovirus (CMV) retinitis and other issues related to the ophthalmic manifestations of AIDS. Interested clinical and research professionals are invited to the meetings.
Fluorescein Angiography Conference
Arranged by the clinical fellows in vitreoretinal studies, this conference convenes periodically to review current angiograms representing disease entities, unusual abnormalities, and controversial interpretations of angiographic findings. Steven D. Schwartz, MD, and other members of the Retina Division supervise the conference.

Glaucoma Weekly Conference
This conference is designed to teach residents and fellows a basic understanding of the pathophysiology and clinical care of glaucoma. Faculty, fellows and residents all participate in case and subject presentations and discussions. The conferences are coordinated by Joseph Caprioli, MD.

Oculoplastics Conference
This conference meets bimonthly and includes full-time and volunteer clinical faculty and visitors from the community who meet to discuss oculoplastics and orbital cases presented by fellows and residents. The coordinator for the year was Robert Alan Goldberg, MD.

Ophthalmic Pathology Conference
Faculty and residents meet daily to review pathological findings from current ophthalmology cases. The coordinator for the year was Ben J. Glasgow, MD.

Pediatric Ophthalmology and Strabismus Conference
At monthly meetings rotating among Harbor-UCLA Medical Center, Olive View-UCLA Medical Center, and the Jules Stein Eye Institute, difficult pediatric ophthalmology and strabismus cases are presented and discussed. These conferences were coordinated for the year by Sherwin J. Isenberg, MD, at Harbor-UCLA Medical Center; Federico Velez, MD, at Olive View-UCLA Medical Center; and Joseph L. Demer, MD, PhD, and Arthur L. Rosenbaum, MD, at the Jules Stein Eye Institute.

Neuro-Ophthalmology Conference
This conference meets bimonthly and includes full-time and volunteer clinical faculty and visitors from the community who meet to discuss neuro-ophthalmology cases presented by clinical fellows and residents. The coordinator for the year was Anthony C. Arnold, MD.

CONTINUING EDUCATION PROGRAMS

Aesthetic Eyelid and Orbitofacial Surgery Course
July 6–7, 2007
Robert Axelrod Memorial Lecturer
Jeffrey Green, MD
New York, New York
Special Featured Lecturer
Val Lambros, MD
Newport Beach, California

The Aesthetic Eyelid and Orbitofacial Surgery course combines live surgical demonstrations, cadaver dissection and didactic lectures. It draws ophthalmologists from around the world to learn about the latest advances in aesthetic and reconstructive surgery of the eyelids and face, many of which have been pioneered at the Jules Stein Eye Institute.

Comprehensive Ophthalmology Review Course
February 28–March 2, 2008
Course Director
David Sarraf, MD

The Jules Stein Eye Institute and the Doheny Eye Institute teamed up this year to present the Third Annual Comprehensive Ophthalmology Review Course. The collaborative effort was developed to serve ophthalmology training programs in Southern California. The program concentrated on the epidemiology, clinical presentation, diagnosis and management of ophthalmological disease.

Clinical Eye Care Update
May 4, 2008
Course Directors
Steven Bae, OD
Jule Lamm, OD
Barry A. Weissman, OD, PhD

The Jules Stein Eye Institute, the Los Angeles County Optometric Society and the Garrick Optometric Welfare Clinic organized an accredited program that served the dual purpose of honoring Lesley L. Walls, OD, MD, DOS, President and Professor of the Southern California College of Optometry, and increasing awareness of the Optometric Clinician-Scientist Endowed Chair Campaign. This endowment will provide significant resources in perpetuity to enable the optometric and ophthalmic professions to collaborate on promising and pioneering investigations to uncover new treatment options that will greatly benefit patients.
JSEI Clinical and Research Seminar
May 30, 2008

Coordinators
Anthony C. Arnold, MD
Robert Alan Goldberg, MD
Gary N. Holland, MD
Bartly J. Mondino, MD
Xian-Jie Yang, PhD

The JSEI Clinical and Research Seminar is geared to physicians and basic scientists. It is an intensive course in which UCLA and guest faculty present current concepts and recent advances in ophthalmology. The curriculum emphasizes practical scientific material and incorporates a detailed syllabus. The Jules Stein Lecture series was initiated in 1970 to be held in conjunction with the Institute’s annual seminar. In 2002, the Bradley R. Straatsma and Thomas H. Pettit Lecture series were initiated. The invited lectures commemorate the contributions of Drs. Jules Stein, Bradley Straatsma and Thomas Pettit to ophthalmic science at UCLA and throughout the United States. The lectures are the academic highlights of the year.

39th Jules Stein Lecturer
Neil R Miller, MD
Frank B. Walsh Professor of Neuro-Ophthalmology
Johns Hopkins Medical Institutions

6th Bradley R. Straatsma Lecturer
Catherine Bowes Rickman, PhD
Associate Professor of Ophthalmology and Cell Biology
Duke University Medical Center

6th Thomas H. Pettit Lecturer
Stuart R. Seiff, MD
Professor of Ophthalmology
Director, Ophthalmic Plastic and Reconstructive Surgery
Chief of Ophthalmology, San Francisco General Hospital

LASERS in Ophthalmology: A Review and Update
June 14, 2008
Course Director
David Sarraf, MD

This half-day seminar reviews indications for laser applications in the various subspecialties of ophthalmology. Landmark studies and trials validating indications are discussed. Course faculty provide an update on new laser systems as well as new applications of old systems. Discussion includes the mechanics or optics of the laser system.

Over 60 basic scientists and clinical researchers attended the Thirteenth Annual Vision Science Conference in Lake Arrowhead, California, on September 7–9, 2007.
RESEARCH CONTRACTS AND GRANTS

FISCAL YEAR 2007–2008	AWARD YEAR TOTAL	TOTAL AWARD

Vision Science Grants

Anthony J. Aldave, MD

Identification of Differentially Expressed Genes in Keratoconus
National Keratoconus Foundation
Duration: 9/1/06–8/31/07

- $10,000

Anthony J. Aldave, MD

Cloning the Gene for Posterior Polymorphous Corneal Dystrophy
National Eye Institute
Duration: 9/30/05–8/31/10

- $166,239
- $831,195

Anthony J. Aldave, MD

Identification of the Genetic Basis of Keratoconus
Using a Candidate Gene Approach Incorporating Gene Expression and Linkage Analysis Data
Stein Oppenheimer Endowment Award
Duration: 2/13/07–2/12/08

- $30,000

Anthony J. Aldave, MD

RNA Interference Targeting of the TGFBI Gene Transcript in Human Corneal Epithelial Cells
Oppenheimer Family Foundation Center
Duration: 2/15/08–2/14/09

- $300,006
- $1,629,995

Suraj P. Bhat, PhD

Gene Expressions in Normal and Cataractous Lens
National Eye Institute
Duration: 6/1/06–5/31/11

- $50,000
- $50,000

Dean Bok, PhD

Identification and Cellular Localization of Gene Products that Affect Photoreceptor Survival in Inherited Retinal Degeneration
Macula Vision Research Foundation
Duration: 4/1/08–3/31/09

- $316,175
- $1,929,977

Dean Bok, PhD

Paul Kayser International Award in Retina Research
Retina Research Foundation
Duration: 12/1/06–11/30/07

- $45,000

1Total amount of grant awarded in previous year(s)
Faculty

Appendices | Research Contracts and Grants

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean Bok, PhD</td>
<td>Foundation Fighting Blindness Center Grant</td>
<td>7/1/05–6/30/10</td>
</tr>
<tr>
<td>w/ Debora B. Farber, PhD, DPhhc, Michael B. Gorin, MD, PhD, Allan Kreiger, MD, Steven Nusinowitz, PhD, Gabriel H. Travis, MD, Xian-Jie Yang, PhD</td>
<td>Total amount of grant awarded in previous year(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundation Fighting Blindness</td>
<td>$375,949 $1,105,878</td>
</tr>
<tr>
<td>Dean Bok, PhD</td>
<td>Development of Complement Modulating Therapeutics for AMD</td>
<td>8/1/06–7/31/11</td>
</tr>
<tr>
<td>w/ other investigators</td>
<td>National Eye Institute</td>
<td>$125,000 $675,000</td>
</tr>
<tr>
<td></td>
<td>Duration: 8/1/06–7/31/11</td>
<td></td>
</tr>
<tr>
<td>Dean Bok, PhD</td>
<td>RDS Mutations; Gene Therapy for ADRP, Macular Degeneration and Pattern Dystrophy</td>
<td>9/1/07–8/31/11</td>
</tr>
<tr>
<td>w/ other investigators</td>
<td>National Eye Institute</td>
<td>$70,581 $282,324</td>
</tr>
<tr>
<td></td>
<td>Duration: 9/1/07–8/31/11</td>
<td></td>
</tr>
<tr>
<td>Anne L. Coleman, MD, PhD</td>
<td>Single Nucleotide Polymorphisms and AMD in Older Women</td>
<td>4/1/07–3/31/09</td>
</tr>
<tr>
<td></td>
<td>American Health Assistance Foundation</td>
<td>$100,000 $100,000</td>
</tr>
<tr>
<td></td>
<td>Duration: 4/1/07–3/31/09</td>
<td></td>
</tr>
<tr>
<td>Anne L. Coleman, MD, PhD</td>
<td>Student Sight Savers Program</td>
<td>12/21/04–11/30/10</td>
</tr>
<tr>
<td></td>
<td>Friends of the Congressional Glaucoma Caucus Foundation</td>
<td>$4,500 $21,849</td>
</tr>
<tr>
<td></td>
<td>Duration: 12/21/04–11/30/10</td>
<td></td>
</tr>
<tr>
<td>Anne L. Coleman, MD, PhD</td>
<td>Ocular Hypertension Treatment Study (OHTS)</td>
<td>1/1/00–12/31/08</td>
</tr>
<tr>
<td></td>
<td>NEI/Charles R. Drew University</td>
<td>$120,966 $575,941</td>
</tr>
<tr>
<td></td>
<td>Duration: 1/1/00–12/31/08</td>
<td></td>
</tr>
<tr>
<td>Anne L. Coleman, MD, PhD</td>
<td>Incidence of Late Macular Degeneration in Older Women</td>
<td>8/15/02–7/31/08</td>
</tr>
<tr>
<td></td>
<td>National Eye Institute</td>
<td>– 1 $2,122,754</td>
</tr>
<tr>
<td></td>
<td>Duration: 8/15/02–7/31/08</td>
<td></td>
</tr>
<tr>
<td>Anne L. Coleman, MD, PhD</td>
<td>Alcon Funding</td>
<td>12/1/07–11/31/09</td>
</tr>
<tr>
<td></td>
<td>Alcon Laboratories</td>
<td>– 1 $67,054</td>
</tr>
</tbody>
</table>

1. **Total amount of grant awarded in previous year(s)**
2. **Grant administered outside of the Jules Stein Eye Institute**
<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph L. Demer, MD, PhD</td>
<td>$336,543</td>
<td>$1,716,985</td>
</tr>
<tr>
<td>Biomechanical Analysis in Strabismus Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 5/1/06–4/30/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph L. Demer, MD, PhD</td>
<td>$270,449</td>
<td>$1,934,345</td>
</tr>
<tr>
<td>New Tests of Vestibular Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Institute on Deafness and Communicative Diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 8/1/02–7/31/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph L. Demer, MD, PhD</td>
<td>— 1 $75,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Walt and Lilly Disney Award for Amblyopia Research Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/04–6/30/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph L. Demer, MD, PhD</td>
<td>$25,753</td>
<td>$49,980</td>
</tr>
<tr>
<td>Genetic and Anatomic Basis of the Fibrosis Syndrome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEI/Boston Children's Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 4/1/07–11/31/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raymond S. Douglas, MD, PhD</td>
<td>$232,491</td>
<td>$985,588</td>
</tr>
<tr>
<td>Immune Activation of Fibroblasts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 10/1/04–9/1/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raymond S. Douglas, MD, PhD</td>
<td>$50,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>RPB Career Development Award</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/07–6/30/11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raymond S. Douglas, MD, PhD</td>
<td>— 1 $31,570</td>
<td>$31,570</td>
</tr>
<tr>
<td>Immune Activation of Fibroblasts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles BioMedical Research Institute/NIH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 9/1/06–8/31/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raymond S. Douglas, MD, PhD</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>ITEDS: Development of Clinical Response Index in TAO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Society of Ophthalmic Plastic and Reconstructive Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/07–6/30/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noa Ela-Dalman, MD</td>
<td>$7,500</td>
<td>$15,000</td>
</tr>
<tr>
<td>Optic Nerve Blood Flow and Retinal Nerve Fiber Layer Thickness in Patients with Unilateral Amblyopia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blind Children's Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/06–12/31/07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon L. Fain, PhD</td>
<td>$281,264</td>
<td>$843,792</td>
</tr>
<tr>
<td>Physiology of Photoreceptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 6/1/05–5/31/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Award Year Total</td>
<td>Total Award</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Debora B. Farber, PhD, DPhhc</td>
<td>$242,750</td>
<td>$1,221,000</td>
</tr>
<tr>
<td>Molecular Mechanisms in Retinal Degenerations</td>
<td>National Eye Institute</td>
<td>Duration: 7/1/06–6/30/11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debora B. Farber, PhD, DPhhc</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>Studies in Ocular Albinism</td>
<td>Vision of Children</td>
<td>Duration: 7/1/05–6/30/08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debora B. Farber, PhD, DPhhc</td>
<td>$12,500</td>
<td>$50,000</td>
</tr>
<tr>
<td>Constitutively Active Gai3 Protein Rescue the Oa1-/-phenotype</td>
<td>Vision of Children</td>
<td>Duration: 4/1/08–3/31/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debora B. Farber, PhD, DPhhc</td>
<td>$152,000</td>
<td>$277,000</td>
</tr>
<tr>
<td>Stem Cell Microvesicles: Potential Tools for Retinal Regeneration</td>
<td>National Eye Institute</td>
<td>Duration: 12/1/07–11/30/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>JoAnn A. Giaconi, MD</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>Nutritional Associations w/Glaucoma/African American Women</td>
<td>American Glaucoma Society</td>
<td>Duration: 2/1/06–12/31/07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben J. Glasgow, MD</td>
<td>$1,250,000</td>
<td>$1,250,000</td>
</tr>
<tr>
<td>Proteins in Molecular Mechanisms of Tear Film Formation</td>
<td>National Eye Institute</td>
<td>Duration: 6/30/06–7/1/11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynn K. Gordon, MD, PhD</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>James S. Adams Scholar Award</td>
<td>Research to Prevent Blindness</td>
<td>Duration: 7/1/02–11/01/07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynn K. Gordon, MD, PhD</td>
<td>$600,000</td>
<td>$600,000</td>
</tr>
<tr>
<td>EMP2, a Molecular Switch for Function of RPE2</td>
<td>VA Merit Grant</td>
<td>Duration: 3/5/05–9/30/09</td>
</tr>
</tbody>
</table>

1Total amount of grant awarded in previous year(s)
<table>
<thead>
<tr>
<th>Name</th>
<th>Total Award</th>
<th>Year Award</th>
<th>Description</th>
<th>Agency</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael B. Gorin, MD, PhD</td>
<td>$878,663</td>
<td>$4,691,120</td>
<td>Genetics in Age-Related Maculopathy</td>
<td>National Eye Institute</td>
<td>4/1/07–3/31/12</td>
</tr>
<tr>
<td>Michael B. Gorin, MD, PhD</td>
<td>$131,250</td>
<td>$150,000</td>
<td>Linkage and Association Studies for Macular Degeneration</td>
<td>American Health Assistance Foundation</td>
<td>4/1/06–3/31/09</td>
</tr>
<tr>
<td>Michael B. Gorin, MD, PhD</td>
<td>$34,500</td>
<td>$34,500</td>
<td>Diabetic Retinopathy Diagnosis Device</td>
<td>Neuro Kinetics/NIH-NEI</td>
<td>9/1/07–8/31/08</td>
</tr>
<tr>
<td>Gary N. Holland, MD</td>
<td></td>
<td>$55,000</td>
<td>Physician-Scientist Award</td>
<td>Research to Prevent Blindness</td>
<td>1/1/03–12/31/07</td>
</tr>
<tr>
<td>Gary N. Holland, MD</td>
<td>$229,450</td>
<td>$575,634</td>
<td>Studies of Ocular Complications of AIDS (SOCA)</td>
<td>National Eye Institute</td>
<td>8/1/05–7/31/08</td>
</tr>
<tr>
<td>Gary N. Holland, MD</td>
<td>$62,460</td>
<td>$361,022</td>
<td>Studies of Ocular Complications of AIDS (LSOCA)</td>
<td>National Eye Institute</td>
<td>8/1/03–6/30/08</td>
</tr>
<tr>
<td>Gary N. Holland, MD</td>
<td>$78,585</td>
<td>$391,060</td>
<td>Multicenter Uveitis Steroid Treatment (MUST) Trial</td>
<td>National Eye Institute</td>
<td>5/1/06–4/30/09</td>
</tr>
<tr>
<td>Gary N. Holland, MD</td>
<td>$10,000</td>
<td>$29,000</td>
<td>Factors Related to the Severity of Ocular Toxoplasmosis</td>
<td>Centers for Disease Control and Prevention</td>
<td>6/1/06–12/31/07</td>
</tr>
<tr>
<td>Joseph Horwitz, PhD</td>
<td>$329,065</td>
<td>$1,645,325</td>
<td>Alpha-Crystallin and Cataractogenesis</td>
<td>National Eye Institute</td>
<td>8/1/04–7/31/09</td>
</tr>
<tr>
<td>Wayne L. Hubbell, PhD</td>
<td>$354,025</td>
<td>$1,692,149</td>
<td>Molecular Basis of Membrane Excitation</td>
<td>National Eye Institute</td>
<td>5/1/05–4/30/10</td>
</tr>
<tr>
<td>FISCAL YEAR 2007–2008</td>
<td>AWARD YEAR TOTAL</td>
<td>TOTAL AWARD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wayne L. Hubbell, PhD</td>
<td>$321,308</td>
<td>$1,212,780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Grant for Vision Research</td>
<td>National Eye Institute</td>
<td>Duration: 3/1/04–2/28/09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sherwin J. Isenberg, MD | – ¹ | $55,000 |
| RPB Physician-Scientist Award | Research To Prevent Blindness | Duration: 1/1/06–12/31/07 |

| Sherwin J. Isenberg, MD | $72,784² | $254,219 |
| A Clinical Trial of Povidone-Iodine for the Treatment of Fungal Corneal Ulcers | Thrasher Research Foundation | Duration: 3/10/08–8/31/09 |

| Sherwin J. Isenberg, MD | $10,096² | $139,995 |
| Conjunctival Tissue Gas Monitoring in the Animal Model | Intelligent Optical Systems/NEI | Duration: 2/25/08–7/31/08 |

| Ralph D. Levinson, MD | $25,000 | $350,000 |
| Studies in Immunogenetics of Ocular Inflammatory Disease | MacDonald Family Foundation | Duration: 5/1/02–6/30/09 |

| Bartly J. Mondino, MD | $110,000 | $110,000 |
| Departmental Grant Award | Research to Prevent Blindness | Duration: 1/1/07–12/31/08 |

| Steven Nusinowitz, PhD | – ¹ | $50,000 |
| Kirchgessner Foundation Research Award | Kirchgessner Foundation | Duration: 12/1/04–6/30/08 |

| Steven Nusinowitz, PhD | $25,500 | $51,542 |
| Photoreceptor and Retinal Pigment Epithelium (RPE) | The Vision of Children | Duration: 4/3/06–6/30/08 |

| Steven Nusinowitz, PhD | $212,000 | $1,025,000 |
| w/ Dean Bok, PhD, Michael B. Gorin, MD, PhD | Clinical Studies of Stargardt Disease and Development of a New Mouse Model of Stargardt Disease | Drs. Daljit S. and Elaine Sarkaria Fund | Duration: 7/1/07–6/30/11 |

¹Total amount of grant awarded in previous year(s)
²Grant administered outside of the Jules Stein Eye Institute
<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year</th>
<th>Amount 1</th>
<th>Amount 2</th>
<th>Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Nusinowitz, PhD</td>
<td>1</td>
<td>$16,449</td>
<td></td>
<td>Stein Oppenheimer Award</td>
<td>4/29/06–4/30/08</td>
</tr>
<tr>
<td>Roxanna A. Radu, PhD</td>
<td></td>
<td>$50,000</td>
<td>$100,000</td>
<td>Analysis of A2E Degradation and Complement Activation</td>
<td>4/1/08–3/31/10</td>
</tr>
<tr>
<td>Arthur L. Rosenbaum, MD</td>
<td>1</td>
<td>$55,000</td>
<td></td>
<td>Physician-Scientist Award</td>
<td>1/1/07–12/31/08</td>
</tr>
<tr>
<td>Arthur L. Rosenbaum, MD</td>
<td>1</td>
<td></td>
<td>$300,000</td>
<td>Lateral Rectus Reanimation Following Sixth Nerve Palsy</td>
<td>9/1/04–8/31/08</td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>1</td>
<td></td>
<td>$10,000</td>
<td>Mrs. Merrill Park Award</td>
<td>6/15/07–6/30/08</td>
</tr>
<tr>
<td>Hui Sun, PhD</td>
<td></td>
<td>$50,000</td>
<td>$50,000</td>
<td>Research Award</td>
<td>3/1/07–2/28/08</td>
</tr>
<tr>
<td>Hui Sun, PhD</td>
<td></td>
<td>$225,000</td>
<td>$1,125,000</td>
<td>Molecular Mechanism of Vitamin A Uptake for Vision</td>
<td>9/30/07–8/31/12</td>
</tr>
<tr>
<td>Hui Sun, PhD</td>
<td></td>
<td>$46,000</td>
<td>$184,000</td>
<td>New Scholar Award</td>
<td>9/1/06–8/31/10</td>
</tr>
<tr>
<td>Hui Sun, PhD</td>
<td></td>
<td>$87,785</td>
<td>$263,355</td>
<td>Research Grant</td>
<td>5/1/07–4/30/10</td>
</tr>
<tr>
<td>Hui Sun, PhD</td>
<td>1</td>
<td></td>
<td>$210,000</td>
<td>E. Matilda Ziegler Foundation</td>
<td>12/1/04–11/30/07</td>
</tr>
<tr>
<td>Faculty Name</td>
<td>Award Year</td>
<td>Total Award</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel H. Travis, MD</td>
<td>$100,000</td>
<td>$575,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stein Professorship Award</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/01–6/30/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel H. Travis, MD</td>
<td>$250,000</td>
<td>$1,250,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Role of Muller Cells in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Pigment Regeneration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 3/1/08–2/28/13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel H. Travis, MD</td>
<td>$305,275</td>
<td>$1,526,453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision Science Training Grant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 9/30/05–9/29/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel H. Travis, MD</td>
<td>$100,000</td>
<td>$500,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruce Ford and Anne Smith</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundy Foundation Grant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/03–8/15/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel H. Travis, MD</td>
<td>$242,758</td>
<td>$1,222,399</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical and Genetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of the Visual Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 9/9/05–7/31/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel H. Travis, MD</td>
<td>$80,000</td>
<td>$240,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2E Accumulation in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macular Degenerations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathogenic Significance and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implications for Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macula Vision Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 7/31/07–6/30/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David S. Williams, PhD</td>
<td>$100,000</td>
<td>$500,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doris and Jules Stein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research to Prevent Blindness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 1/1/08–12/31/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David S. Williams, PhD</td>
<td>$237,903</td>
<td>$237,903</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retinal Cell Biology of Usher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 12/1/07–11/30/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David S. Williams, PhD</td>
<td>$200,200</td>
<td>$200,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of Lentivirus-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based Usher 1B Gene Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Neurovision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Fighting Blindness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 10/1/07–6/30/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Total amount of grant awarded in previous year(s)
FISCAL YEAR 2007–2008

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Institute/Award</th>
<th>Amount</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xian-Jie Yang, PhD</td>
<td>Cytokine Signal Transduction in Retinal Development National Eye Institute</td>
<td>$242,758</td>
<td>$979,641</td>
</tr>
<tr>
<td>Xian-Jie Yang, PhD</td>
<td>Dolly Green Scholar Award Research to Prevent Blindness</td>
<td>— 1</td>
<td>$70,000</td>
</tr>
<tr>
<td>Xian-Jie Yang, PhD</td>
<td>Development of Lentivirus-Based Usher 1B Gene Therapy Foundation Fighting Blindness/UC San Diego</td>
<td>$31,308</td>
<td>$93,923</td>
</tr>
<tr>
<td>Tara A. Young, MD, PhD</td>
<td>Faculty Research Grant Council on Research</td>
<td>— 1</td>
<td>$10,000</td>
</tr>
<tr>
<td>Tara A. Young, MD, PhD</td>
<td>AACR-FNAB Career Development Award for Translational Cancer Research American Association for Cancer Research</td>
<td>$50,000</td>
<td>$100,000</td>
</tr>
</tbody>
</table>

Postdoctoral Fellow Grants

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Institute/Award</th>
<th>Amount</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novrouz Akhmedov, PhD</td>
<td>Studies on the 7R Protein that is Associated with a Novel Lucus for Retinitis Pigmentosa Hope for Vision</td>
<td>— 1</td>
<td>$50,000</td>
</tr>
<tr>
<td>Alex Yuan, MD, PhD</td>
<td>Embryonic Stem Cell Microvesicles: A New Approach to RNA Transfer The Vision of Children</td>
<td>$100,144</td>
<td>$200,144</td>
</tr>
<tr>
<td>Alex Yuan, MD, PhD</td>
<td>Oppenheimer Family Foundation Prevent Eye Disease</td>
<td>— 1</td>
<td>$30,000</td>
</tr>
</tbody>
</table>
Clinical Trials

Anthony J. Aldave, MD
To Evaluate the Safety and Effectiveness of the Phakic 6 H2 Refractive Anterior Chamber Lens
Ophthalmic Innovations Int.
Duration: 7/3/03–7/2/07

<table>
<thead>
<tr>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5,469</td>
<td>$11,288</td>
</tr>
</tbody>
</table>

Joseph Caprioli, MD
Retrospective, Long-Term, Longitudinal Analysis of HRT Image Data in Patients with Ocular Hypertension
Pfizer, Inc.
Duration: 4/7/06–4/7/11

<table>
<thead>
<tr>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6,153</td>
<td>$320,695</td>
</tr>
</tbody>
</table>

Joseph Caprioli, MD
A 48-Month, Multicenter, Randomized, Double-Masked, Placebo-Controlled Clinical Study
Allergan, Inc.
Duration: 8/31/99–7/8/07

<table>
<thead>
<tr>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>$293,523</td>
<td>$293,523</td>
</tr>
</tbody>
</table>

Joseph Caprioli, MD
Measurement and Prediction of Progression Rates in Early and Moderately Advanced Glaucoma
Pfizer, Inc.
Duration: 9/19/07–9/30/08

Joseph Caprioli, MD
Oral Memantine Study
Allergan, Inc.
Duration: 8/31/99–7/8/07

<table>
<thead>
<tr>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7,540</td>
<td>$74,603</td>
</tr>
</tbody>
</table>

Robert Alan Goldberg, MD
A Phase III, Randomized, Placebo-Controlled, Multicenter, Double-Blind Study of Reloxin
Medicis Pharmaceuticals Corp.
Duration: 1/22/07–1/22/09

Christine R. Gonzales, MD
A Phase III, Randomized DM, Parallel-Assignment Study of Intravitreal Bevasiranib Sodium
Opko Health
Duration: 3/13/08–3/14/10

\(^1\text{Total amount of grant awarded in previous year(s)}\)
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>A Phase I, Trial to Establish the Safety, Tolerability, and Pharmacokinetic Profile of Intravitreous Injections</td>
<td>$50,985</td>
</tr>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>Open Label Macugen for the Treatment of Macular Edema Secondary to Branch Retinal Vein Occlusion</td>
<td>$32,950</td>
</tr>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>Intravitreal Injections for Patients with Exudative AMD</td>
<td>$516,580</td>
</tr>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>Macugen with Sham Photodynamic Therapy</td>
<td>$229,129</td>
</tr>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>A Phase IV, Open Label, Multicenter Trial of Maintenance Intravitreous Injections</td>
<td>$141,153</td>
</tr>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>Pegaptanib Sodium (Macugen) for Macular Edema</td>
<td>$208,461</td>
</tr>
<tr>
<td>Christine R. Gonzales, MD</td>
<td>Combretastin A4 Phosphate for Subfoveal Choroidal Neovascularization</td>
<td>$4,362</td>
</tr>
<tr>
<td>Anurag Gupta, MD</td>
<td>Intravitreal Injections in Patients with Exudative AMD</td>
<td>$242,948</td>
</tr>
<tr>
<td>Faculty104</td>
<td>Appendices</td>
<td>Research Contracts and Grants</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anurag Gupta, MD and Steven D. Schwartz, MD</th>
<th>$24,209</th>
<th>$105,471</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Juxtascleral Administration of Anecortave Acetate v. Sham Administration in Patients with Exudative AMD</td>
<td>Alcon Research, LTD</td>
<td>Duration: 6/1/04–5/31/10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anurag Gupta, MD</th>
<th>$16,358</th>
<th>$82,541</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Care v. Corticosteroid (SCORE)</td>
<td>Allergan Pharmaceutical Corp.</td>
<td>Duration: 8/20/04–2/19/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anurag Gupta, MD and Steven D. Schwartz, MD</th>
<th>$34,394</th>
<th>$152,948</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subfoveal Choroidal Neovascularization</td>
<td>Sirna Therapeutics, Inc.</td>
<td>Duration: 4/29/05–4/1/08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simon K. Law, MD, PharmD</th>
<th>$37,500</th>
<th>$37,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Evaluation of the Incidence of Glaucoma Risk Factors in Patients from a Managed Care Setting</td>
<td>Southern California Permanente Medical Group</td>
<td>Duration: 10/1/05–7/31/07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simon K. Law, MD, PharmD</th>
<th>$34,304</th>
<th>$34,304</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optic Nerve Appearance in Age-Related Macular Degeneration</td>
<td>The American Geriatrics Society</td>
<td>Duration: 7/1/07–6/30/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kevin M. Miller, MD</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Study Ophtec, USA</td>
<td>Duration: 7/14/04–7/15/09</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kevin M. Miller, MD</th>
<th>$45,977</th>
<th>$45,977</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV Absorbing Acrylic Posterior Hoya Corp.</td>
<td>Duration: 11/1/04–06/30/08</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steven Nusinowitz, PhD</th>
<th>$20,000</th>
<th>$21,500</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Phase II Study of the Safety and Efficacy of Fenretinide</td>
<td>Sirion Therapeutics, Inc.</td>
<td>Duration: 9/1/07–8/31/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steven D. Schwartz, MD</th>
<th>$297,712</th>
<th>$297,712</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexamethasone Posterior Segment Drug Delivery System Allergan Sales, LLC</td>
<td>Duration: 8/16/04–1/31/09</td>
<td></td>
</tr>
</tbody>
</table>

1Total amount of grant awarded in previous year(s)
<table>
<thead>
<tr>
<th>Name</th>
<th>Award Year Total</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$45,475</td>
<td>$171,916</td>
</tr>
<tr>
<td>DEX PS DDS Applicator System in the Treatment of Patients with Diabetic Macular Edema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergan Sales, LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 8/25/05–12/31/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$13,162</td>
<td>$82,337</td>
</tr>
<tr>
<td>A Multicenter, Randomized, Placebo-Controlled, Double-Masked, Parallel Group, Dose Ranging Clinical Trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiltern Int.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 4/1/07–3/31/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$24,961</td>
<td>$24,961</td>
</tr>
<tr>
<td>Age Related Eye Disease Study II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emmes Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 1/1/06–12/31/08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$17,792</td>
<td>$181,112</td>
</tr>
<tr>
<td>Ranibizumab with (CNV) - FVF3689g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetech, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 3/1/06–2/28/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$3,413</td>
<td>$3,413</td>
</tr>
<tr>
<td>Ranibizumab Injection - FVF4168g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetech, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 10/5/07–8/31/12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$1</td>
<td>$175,334</td>
</tr>
<tr>
<td>Macular Telangiectasia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowy Medical Research Institute/NEI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 9/1/05–8/31/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD and Christine R. Gonzales, MD</td>
<td>$23,059</td>
<td></td>
</tr>
<tr>
<td>The Diabetic Retinopathy Clinical Research Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEI/JAEB Center for Health Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 6/1/03–12/31/09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steven D. Schwartz, MD</td>
<td>$74,300</td>
<td>$142,200</td>
</tr>
<tr>
<td>Coordinating Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison of AMD Treatment Trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration: 9/1/07–7/31/08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CLINICAL RESEARCH STUDIES

CORNEA AND EXTERNAL EYE

A Study of the Genetic Basis of Posterior Polymorphous Corneal Dystrophy
The Institute is participating in a study funded by the National Eye Institute to identify the gene(s) responsible for posterior polymorphous dystrophy, an inherited corneal endothelial disorder that may result in irreversible corneal swelling and loss of vision. Investigator: Anthony J. Aldave, MD

Identifying Novel Genes for Fuchs’ Endothelial Corneal Dystrophy
The Institute is participating in a multi-center study funded by the National Eye Institute to identify the gene(s) responsible for Fuchs’ corneal endothelial dystrophy, an inherited corneal endothelial disorder that may result in irreversible corneal swelling and loss of vision. Investigators: Anthony J. Aldave, MD; Bartly J. Mondino, MD; and Gary N. Holland, MD

EYE INFECTIONS AND INFLAMMATIONS

Multicenter Uveitis Steroid Treatment
The study compares two currently available treatments for uveitis. Systemic treatment utilizing medications (corticosteroids or immunosuppressive drugs) taken orally, by injection, or by intravenous infusion will be compared to treatment with an intraocular implant containing corticosteroid that is placed surgically. Neither is experimental. Both treatment approaches are known to be effective for treating uveitis, but have different potential adverse events. Investigators: Gary N. Holland, MD; Ralph D. Levinson, MD; Susan S. Ransome, MD; and David Sarraf, MD

Longitudinal Studies of the Ocular Complications of AIDS (LSOCA)
“LSOCA” is a multicenter, NIH-supported epidemiological study designed to investigate the nature of HIV-related eye diseases since the introduction of potent antiretroviral therapies. Nearly 2,000 people are being followed nationwide. Investigators: Gary N. Holland, MD; and Susan S. Ransome, MD

Relation Between KIR Genes & CMV Retinitis
Institute faculty are studying why some people with AIDS develop CMV retinitis, an infection of the retina, while others do not. People are at risk for CMV retinitis when the number of circulating CD4+ T-lymphocytes drops substantially and there are a high number of HIV particles in the blood. This study is designed to determine whether KIR genes, which control natural killer (NK) cell activities and other immune functions, differ between HIV-infected individuals who develop CMV retinitis and those who do not, despite similar risk factors otherwise. Investigators: Gary N. Holland, MD; and Ralph D. Levinson, MD

Factors Related to the Severity of Ocular Toxoplasmosis
Toxoplasmosis is a common parasitic disease that can cause a vision-threatening infection of the retina. Severity varies from asymptomatic lesions to extensive destruction of the retina with blindness. Individuals with and without ocular toxoplasmosis are being evaluated with a blood test to determine whether (1) people can have a genetic predisposition to severe disease when infected with the parasite, or (2) there is a particular strain of parasite that causes more severe disease than others. Investigators: Gary N. Holland, MD; and Ralph D. Levinson, MD

GENERAL OPHTHALMOLOGY

Retinopathy in Adult Patients with Congenital Heart Disease
The purpose of this study is to investigate whether adult patients with congenital heart disease have retinal blood vessel abnormalities. The patients are divided into two groups: (1) patients with coarctatio of the aorta, and (2) patients with cyanotic disease. This study is being conducted in cooperation with the Adult Congenital Heart Disease Center at UCLA. Investigators: Steven D. Schwartz, MD; and Eric S. Lee, MD

GLAUCOMA AND OPTIC NERVE

Clinical Measurements of the Optic Nerve in Glaucoma
Accurate assessment of optic nerve and nerve fiber layer is important to the early detection and timely treatment of glaucoma. Studies are underway to develop novel structural measures of the optic nerve and nerve fiber layer, which are sensitive and specific for early and progressive, glaucomatous optic nerve damage. Investigators: Joseph Caprioli, MD; Anne L. Coleman, MD, PhD; and Simon K. Law, MD, PharmD

Optic Nerve Appearance in Age-Related Macular Degeneration
To evaluate the relationship between macular degeneration and optic nerve change, digital imaging technology and photography are used to assess the structural appearance of the optic nerve in patients with age-related macular degeneration. Investigator: Simon K. Law, MD, PharmD
Ahmed Valve Implant vs. Baerveldt Implant in Glaucoma
Tube shunt devices for glaucoma have received little comparison. This study compares the long-term efficacy and safety of the two most commonly used glaucoma tube shunt surgical devices in clinical settings. Investigators: Joseph Caprioli, MD; Anne L. Coleman, MD, PhD; and Simon K. Law, MD, PharmD

Pentacam for Intraocular Lens Calculation Following Refractive Surgery
Refractive surgery is a procedure that changes the corneal curvature to correct or eliminate a patient’s refractive error. This change to the corneal curvature significantly confounds the intraocular lens implant power calculation. A new corneal topography instrument, the Pentacam, has been developed that measures both the front and back of the cornea. This new instrument may have the capability to enable us to more accurately calculate the original corneal curvedures, thus improving the accuracy of the lens implant power calculation. Investigators: Kevin M. Miller, MD; and Qiong-Yan Tang, MD

MACULA, RETINA, AND VITREOUS
Dexamethasone Injections in the Treatment of Diabetic Macular Edema
Retina faculty are participating in a study to assess the safety and efficacy of 70 mg and 350 mg dexamethasone posterior segment drug delivery system in the treatment of patients with diabetic macular edema. The three-year multicenter study compares 350 mg and 70 mg dexamethasone injections (slow release) to placebo injections for diabetic macular edema. Investigators: Steven D. Schwartz, MD; Christine R. Gonzales, MD; Allan E. Kreiger, MD; Tara A. Young, MD; PhD; Eric S. Lee, MD; Scott C. Oliver, MD; Robert E. Coffee, MD; Shantan Reddy, MD; and Anurag Gupta, MD

Clinical Characterization, Genetic Testing, and Visual Function in Patients with Stargardt Disease
The Institute is doing a comprehensive analysis of visual function in patients diagnosed with Stargardt disease, an early onset form of macular degeneration caused by a number of mutations in the abcr gene. Investigators perform molecular genetic testing to confirm the Stargardt diagnosis and better understand the diversity of the condition, and obtain baseline measures of visual function with a battery of established clinical electrodagnostic and behavioral tests. Physiological parameters are correlated with specific genetic mutations to establish which diagnostic tests can provide the most reliable measures of retinal dysfunction and retinal cell death (atrophy). Investigators: Michael B. Gorin, MD, PhD; Steven Nusinowitz, PhD; Deborah B. Farber, PhD; Maria Carolina Ortube, MD; and Ariadna Martinez, MS CGC

Understanding the Genetics of Inherited Eye Disorders
The Institute is participating in a study to search for the gene(s) that are responsible for inherited disorders that are either specific to the eye or that have eye findings as part of the medical condition. This study provides for the clinical characterization of affected individuals and at-risk family members, in conjunction with molecular genetic testing, to identify the causative genes and mutations. Study investigators also examine variants in modifier genes (genes that modify the expression of a second gene) that may affect the severity or progression of these conditions. Ocular conditions that affect the development and initial function of the eye and visual system, as well as those that lead to later degenerative changes that compromise vision or the health of the eyes are included in these studies. Investigators: Anthony J. Aldave, MD; and Michael B. Gorin, MD, PhD

LENS AND CATARACT
Ophtec Iris Reconstruction Lens
The Institute is participating in a multicenter clinical investigation designed to evaluate the safety and effectiveness of the Ophtec Model 311 Iris Reconstruction Lens for the treatment of visual disturbances (glare, halos, and photophobia) related to the absence of part or the entire human iris. This study is designed to determine the level of reduction in visual disturbances and improvement in uncorrected and best spectacle corrected visual acuity associated with Model 311 lens implantation. The implant is designed for patients who are aniridic and either aphakic or in need of cataract surgery. Investigators: Kevin M. Miller, MD; and Michael D. Olson, OD, PhD

Morcher Iris Diaphragm
The Institute has obtained a compassionate use Individual Device Exemption from the U.S. Food and Drug Administration to use the Morcher Iris Diaphragm implant in patients with partial or complete aniridia, and to evaluate its preliminary effectiveness. The implant is designed to limit the amount of light coming into the eye, like a natural iris, reducing symptoms of light sensitivity and glare. Investigators: Kevin M. Miller, MD; and Michael D. Olson, OD, PhD

Implant in Glaucoma
Tube shunt devices for glaucoma have received little comparison. This study compares the long-term efficacy and safety of the two most commonly used glaucoma tube shunt surgical devices in clinical settings. Investigators: Joseph Caprioli, MD; Anne L. Coleman, MD, PhD; and Simon K. Law, MD, PharmD

Ahmed Valve Implant vs. Baerveldt Implant in Glaucoma
Tube shunt devices for glaucoma have received little comparison. This study compares the long-term efficacy and safety of the two most commonly used glaucoma tube shunt surgical devices in clinical settings. Investigators: Joseph Caprioli, MD; Anne L. Coleman, MD, PhD; and Simon K. Law, MD, PharmD

Pentacam for Intraocular Lens Calculation Following Refractive Surgery
Refractive surgery is a procedure that changes the corneal curvature to correct or eliminate a patient’s refractive error. This change to the corneal curvature significantly confounds the intraocular lens implant power calculation. A new corneal topography instrument, the Pentacam, has been developed that measures both the front and back of the cornea. This new instrument may have the capability to enable us to more accurately calculate the original corneal curvedures, thus improving the accuracy of the lens implant power calculation. Investigators: Kevin M. Miller, MD; and Qiong-Yan Tang, MD

MACULA, RETINA, AND VITREOUS
Dexamethasone Injections in the Treatment of Diabetic Macular Edema
Retina faculty are participating in a study to assess the safety and efficacy of 70 mg and 350 mg dexamethasone posterior segment drug delivery system in the treatment of patients with diabetic macular edema. The three-year multicenter study compares 350 mg and 70 mg dexamethasone injections (slow release) to placebo injections for diabetic macular edema. Investigators: Steven D. Schwartz, MD; Christine R. Gonzales, MD; Allan E. Kreiger, MD; Tara A. Young, MD; PhD; Eric S. Lee, MD; Scott C. Oliver, MD; Robert E. Coffee, MD; Shantan Reddy, MD; and Anurag Gupta, MD

Clinical Characterization, Genetic Testing, and Visual Function in Patients with Stargardt Disease
The Institute is doing a comprehensive analysis of visual function in patients diagnosed with Stargardt disease, an early onset form of macular degeneration caused by a number of mutations in the abcr gene. Investigators perform molecular genetic testing to confirm the Stargardt diagnosis and better understand the diversity of the condition, and obtain baseline measures of visual function with a battery of established clinical electrodagnostic and behavioral tests. Physiological parameters are correlated with specific genetic mutations to establish which diagnostic tests can provide the most reliable measures of retinal dysfunction and retinal cell death (atrophy). Investigators: Michael B. Gorin, MD, PhD; Steven Nusinowitz, PhD; Deborah B. Farber, PhD; Maria Carolina Ortube, MD; and Ariadna Martinez, MS CGC

Understanding the Genetics of Inherited Eye Disorders
The Institute is participating in a study to search for the gene(s) that are responsible for inherited disorders that are either specific to the eye or that have eye findings as part of the medical condition. This study provides for the clinical characterization of affected individuals and at-risk family members, in conjunction with molecular genetic testing, to identify the causative genes and mutations. Study investigators also examine variants in modifier genes (genes that modify the expression of a second gene) that may affect the severity or progression of these conditions. Ocular conditions that affect the development and initial function of the eye and visual system, as well as those that lead to later degenerative changes that compromise vision or the health of the eyes are included in these studies. Investigators: Anthony J. Aldave, MD; and Michael B. Gorin, MD, PhD

LENS AND CATARACT
Ophtec Iris Reconstruction Lens
The Institute is participating in a multicenter clinical investigation designed to evaluate the safety and effectiveness of the Ophtec Model 311 Iris Reconstruction Lens for the treatment of visual disturbances (glare, halos, and photophobia) related to the absence of part or the entire human iris. This study is designed to determine the level of reduction in visual disturbances and improvement in uncorrected and best spectacle corrected visual acuity associated with Model 311 lens implantation. The implant is designed for patients who are aniridic and either aphakic or in need of cataract surgery. Investigators: Kevin M. Miller, MD; and Michael D. Olson, OD, PhD

Morcher Iris Diaphragm
The Institute has obtained a compassionate use Individual Device Exemption from the U.S. Food and Drug Administration to use the Morcher Iris Diaphragm implant in patients with partial or complete aniridia, and to evaluate its preliminary effectiveness. The implant is designed to limit the amount of light coming into the eye, like a natural iris, reducing symptoms of light sensitivity and glare. Investigators: Kevin M. Miller, MD; and Michael D. Olson, OD, PhD
Evaluating the Use of Microplasmin before Undergoing Vitrectomy Surgery
Retina faculty are evaluating whether the injection of Microplasmin, an experimental drug, will induce a total Posterior Vitreous Detachment (PVD) – loosening the connection between the vitreous (the jelly-like substance in the center of the eye) and the retina (the part of the eye responsible for vision). Microplasmin injected into animal eyes has been shown to help loosen the connection between the vitreous and the retina, called a detachment. Detachment of the vitreous from the retina may improve certain retinal conditions, such as diabetic retinopathy or diabetic macular edema. Investigators: Steven D. Schwartz, MD; Christine R. Gonzales, MD; Allan E. Kreiger, MD; Tara A. Young, MD, PhD; Eric S. Lee, MD; Scott C. Oliver, MD; Jean Pierre Hubschman, MD; and Anurag Gupta, MD

Effects of Lucentis® on Autofluorescence Imaging
The purpose of this study is to evaluate the effect of Lucentis® injections on autofluorescence imaging in patients with wet age-related macular degeneration. Investigators: Jean Pierre Hubschman, MD; Steven D. Schwartz, MD; and Robert E. Coffee, MD

Comparison of 25 and 23 Gauge Vitrectomy Sutureless Techniques using Ultrasound Biomicroscopy
Members of the Retina Division are collecting additional data using ultrasound biomicroscopy to evaluate and compare differences in the healing process of the eye following vitrectomy surgery with different sutureless techniques. Investigators: Jean Pierre Hubschman, MD; and Steven D. Schwartz, MD

Genetics of Age-related Maculopathy (GARM)
The Institute is participating in a multicenter study with University of Pittsburgh to understand the genetic and environmental risks that contribute to age-related maculopathy (ARM). The study is designed to identify genes that alter susceptibility to ARM and determine the extent to which variants in these genes and other factors affect one’s risk of developing the condition. Study candidates include patients with macular degeneration and their children (more than 49 years old), as well as the spouses or partners of these children, and additional family members of ARM patients. Investigators: Michael B. Gorin, MD, PhD; Maria Carolina Ortube, MD; Robert Ferrell, PhD; Daniel Weeks, PhD; and Yvette Conley, PhD

Rapid, Non-Invasive, Regional Functional Imaging of the Retina
Institute investigators are participating in a study funded by the National Institutes of Health to monitor the responses of the pupil to light as a method for detecting regional losses of function of the retina. The ultimate goal of this research is to develop a simple, noninvasive, rapid method for widespread screening of diabetics in order to identify those who may require medical attention and/or therapy for diabetic retinopathy. The basic device used for monitoring the eye positions and pupil changes uses invisible levels of light to measure the eye. The instrument was constructed by Neuro Kinetics Inc., a company that has licensed this technology from the University of Pittsburgh, which holds the patent on the design and use of this instrument with Dr. Gorin listed as the primary inventor. (Dr. Gorin has a financial interest in this research.) Investigators: Michael B. Gorin, MD, PhD; Alex Kiderman, PhD; and Maria Carolina Ortube, MD

Comparison of Methods to Detect Early Retinal Changes Associated with Hydroxychloroquine (Plaquenil) Exposure
Hydroxychloroquine (Plaquenil) is an oral medication used in the treatment of several chronic autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and Sjogren syndrome. Because Plaquenil has been found to cause retinal damage in a small number of individuals, screening for Plaquenil-related retinal toxicity is considered by many to be an important part of patient management. Study investigators will review existing data from individuals who had testing done at the Institute’s Visual Physiology Laboratory to determine which tests have a higher degree of sensitivity to detect early retinal changes that might reflect a toxic response to Plaquenil therapy. Investigators: Michael B. Gorin, MD, PhD; Steven Nusinowitz, PhD; Maria Carolina Ortube, MD; and Ariadna Martinez, MS CGC
Vitamin Supplementation as Treatment for Dry Age-Related Macular Degeneration
This study explores the effects of oral supplementation of high doses of lutein and zeaxanthin and/or omega-3 long chain polyunsaturated fatty acids, called DHA and EPA, on the development of age-related macular degeneration (AMD) and vision loss. The goal of the optional sub-study is to evaluate the effects of eliminating beta-carotene and/or reducing zinc from the original Age-Related Eye Disease Study formula on the progression and development of AMD. Investigators: Steven D. Schwartz, MD; Christine R. Gonzales, MD; Allan E. Kreiger, MD; Tara A. Young, MD, PhD; David Sarraf, MD; Jean-Pierre Hubschman, MD; Scott C. Oliver, MD; Robert E. Coffee, MD; Shantan Reddy, MD; and Anurag Gupta, MD

A Natural History Study of Macular Telangiectasia
This is a natural history study of macular telangiectasia. Investigators are collecting data about this rare retinal disease with the hope of developing both a better knowledge of macular telangiectasia as well as a treatment. Investigators: Steven D. Schwartz, MD; Christine R. Gonzales, MD; Allan E. Kreiger, MD; Tara A. Young, MD, PhD; Michael B. Gorin, MD, PhD; David Sarraf, MD; Jean-Pierre Hubschman, MD; Scott C. Oliver, MD; Eric S. Lee, MD; Robert E. Coffee, MD; Shantan Reddy, MD; and Anurag Gupta, MD

OCULAR MELANOMA
Molecular and Cytogenetic Studies of Ocular Melanoma
The goal of this research is to study ocular melanoma tumor tissue, and identify key molecular and genetic features that could help predict those patients who may be at high risk for metastasis. A sample of tumor tissue will be removed at the time of radioactive plaque placement surgery or tumor resection and used for molecular and genetic testing. Patients will be informed of the results and, depending on the outcome, will have increased monitoring to detect metastasis at the earliest possible stage and the opportunity to participate in clinical trials of experimental treatments that might not normally be offered to patients with ocular melanoma. Investigators: Tara A. Young, MD, PhD; Lynn K. Gordon, MD, PhD; and Bradley R. Straatsma, MD, JD

PET/CT Imaging for Early Detection of Ocular Melanoma
Subjects with ocular melanoma undergo a series of combined position emission tomography (PET)/CT scans. Results are studied to evaluate the use of this new imaging procedure compared to CT scanning alone. This information may be useful in detecting metastasis (spread of tumors) at an early stage. The research may ultimately provide new knowledge that will be used to develop better ways of monitoring for tumor spread and allow for early treatment if metastasis is found. Investigators: Tara A. Young, MD, PhD; and Bradley R. Straatsma, MD, JD
Optical Coherence Tomography of Regional Abnormalities Associated with Choroidal Nevus, Choroidal Melanoma and Choroidal Melanoma Treated with Iodine-125 Brachytherapy

Optical coherence therapy (OCT) imaging is performed during regularly scheduled visits on patients with choroidal nevus, choroidal melanoma, and choroidal melanoma treated with iodine-125 brachytherapy. The purpose of this study is threefold: to study the structure and function of the retina overlying the tumor and the macula, to evaluate the effects of radiation on the retina, and to compare OCT imaging to other imaging procedures. Investigators: Melissa W. Chun, OD; Jennie Kageyama, OD; Bradley R. Straatsma, MD, JD; Tara A. Young, MD, PhD; and Scott C. Oliver, MD

Thyroid-Related Orbitopathy

In this research, cells from the orbital tissue of patients with Graves’ disease, removed as part of surgery, are harvested and grown in the laboratory. Molecular biologic features of the disease identified in these cells are correlated with clinical parameters of the disease. It is hoped that this research will lead to better therapies and more specific tests to determine the effectiveness of therapies. Investigators: Robert Alan Goldberg, MD; Terry J. Smith, MD; and Raymond S. Douglas, MD, PhD

Hydrogel Lacrimal Stent Study

Faculty in the Orbital and Ophthalmic Plastic Surgery Division are evaluating the use of the Hydrogel Lacrimal Stent in dacryocystorhinostomy (DCR) surgery. DCR surgery creates an ostium or drainage hole between the tear duct and the nose, bypassing obstructed tear ducts. A stent is inserted following surgery to maintain the ostium. The new lacrimal stent made of Hydrogel, a medical plastic that can absorb more than 90% of its weight in water, absorbs fluid from surrounding tissue to expand to a diameter of approximately 1/5 inch in a spherical fashion. This fluid-absorbing property allows the stent to be inserted small and expand after insertion, thus minimizing scarring within the nasal cavity. Investigators: Robert Alan Goldberg, MD; and Raymond S. Douglas, MD, PhD

Thyroid-Related Orbitopathy

In this research, cells from the orbital tissue of patients with Graves’ disease, removed as part of surgery, are harvested and grown in the laboratory. Molecular biologic features of the disease identified in these cells are correlated with clinical parameters of the disease. It is hoped that this research will lead to better therapies and more specific tests to determine the effectiveness of therapies. Investigators: Robert Alan Goldberg, MD; Terry J. Smith, MD; and Raymond S. Douglas, MD, PhD

HYDROGEN AND OPTHALMIC PLASTIC SURGERY

Biomechanical Analysis in Strabismus Surgery

Now in its second decade of support from the National Eye Institute, this study aims to develop new diagnostic tests and computer models that will lead to improvements in strabismus surgery. Tests of binocular alignment and eye movements, as well as magnetic resonance imaging (MRI) of the extraocular muscles, are performed in the Institute’s Clinical and Basic Science Ocular Motility Laboratory before and after strabismus surgery. Selected patients undergo molecular genetic studies of the extraocular muscles and orbital connective tissues. Results are correlated with state-of-the-art anatomic studies done in the laboratory and with comparative anatomic studies in volunteers who do not have strabismus. Investigator: Joseph L. Demer, MD, PhD

Genetic and Anatomic Basis of the Fibrosis Syndrome

The long-term goal of this National Eye Institute-sponsored project is to determine the cause of congenital fibrosis of the extraocular muscles, a rare, inherited condition resulting in strabismus and drooping eyelids. A collaborative investigation is being conducted with investigators from Children’s Hospital in Boston. Nerve versus muscular causes of this syndrome are being studied in individual families around the country and linked through molecular genetics testing of blood samples to the causal genes. Investigator: Joseph L. Demer, MD, PhD

Optic Nerve in Amblyopia

Amblyopia is a major cause of childhood visual loss. With the support of a Research to Prevent Blindness Roy and Lillian Disney Award for Amblyopia Research, Dr. Demer’s laboratory uses high resolution, surface-coil magnetic resonance imaging (MRI) to study optic nerve size in amblyopia. This study tests the theory that the optic nerve is smaller than normal in amblyopia and that optic nerve size may be a limiting factor in restoration of vision by amblyopia treatment. Investigator: Joseph L. Demer, MD, PhD

PEDIATRICS AND STRABISMUS
PUBLICATIONS OF THE FULL-TIME FACULTY

Anthony J. Aldave, MD

Anthony C. Arnold, MD

Dean Bok, PhD

Joseph Caprioli, MD

Anne L. Coleman, MD, PhD

Joseph L. Demer, MD, PhD

Sophie X. Deng, MD, PhD

Raymond S. Douglas, MD, PhD

Gordon L. Fain, PhD

Debora B. Farber, PhD, DPhhc

JoAnn A. Giaconi, MD

Appendices | Publications of the Full-Time Faculty

Ben J. Glasgow, MD

Robert Alan Goldberg, MD

Christine R. Gonzales, MD

Bourla D, Gonzales CR, Schwartz SD. Systemic risk factors for the progression of laser treated retinopathy of prematurity to stage 4 or 5 disease. Retina, 2008; supplement.

Lynn K. Gordon, MD, PhD

LK, Braun J. The tetraspan protein EMP2 regulates expression of
caveolin-1. J Biol Chem. 2007 Sep
7;282(36):26542-51. Epub 2007
Jul 3.

Shimazaki K, Wadehra M, Forbes A, Chan AM, Goodglick L, Kelly KA,
Braun J, Gordon LK. Epithelial
membrane protein 2 modulates
infectivity of Chlamydia muridarum
(MoPn). Microbes Infect. 2007
Apr 18.

Michael B. Gorin, MD, PhD
Jakobsdottir J, Conley YP, Weeks
DE, Ferrell RE, Gorin MB. C2 and
CFB genes in age-related
maculopathy and joint action with
CFH and LOC387715 genes. PLoS

Thiels E, Hoffman EK, Gorin MB.
A reliable behavioral assay for the
assessment of sustained

Young TA, Burgess BL, Rao NP,
Gorin MB, Straatsma BR. High-
density genome array is superior to
fluorescence in-situ hybridization
analysis of monosomy 3 in
choroidal melanoma fine needle
aspiration biopsy. Mol Vis. 2007

Yellore VS, Khan MA, Bourla N,
Rayner SA, Chen MC, Sonmez B,
Momi RS, Sampat KM, Gorin MB,
Aldave AJ. Identification of
mutations in UBIAD1 following
exclusion of coding mutations in the
chromosome 1p36 locus for
Schnyder crystalline corneal
dystrophy. Mol Vis. 2007 Sep
24;13:1777-82.

Anurag Gupta, MD
Gonzales CR, Singh S, Yu F, Kreiger
AE, Gupta A, Schwartz SD. Pediatric
rhegmatogenous retinal
detachment: clinical features and
surgical outcomes. Retina. 2008

Hubschman JP, Gupta A, Bourla
DH, Culjat M, Yu F, Schwartz SD.
20-, 23-, and 25-gauge vitreous
cutters: performance and
characteristics evaluation. Retina.

Holland GN, Vaudaux JD,
Shiramizu KM, Yu F, Goldenberg
DT, Gupta A, Carlson M, Read RW,
Novack RD, Kupferman BD,
Southern California HIV/Eye
Consortium. Characteristics of
untreated AIDS-related
cytomegalovirus retinitis. II.
Findings in the era of highly active
antiretroviral therapy (1997 to

Bourla DH, Hubschman JP, Culjat
M, Tsirbas A, Gupta A, Schwartz
SD. Feasibility study of intraocular
robotic surgery with the da Vinci
surgical system. Retina. 2008

Kapamajian M, Gonzales CR, Gupta
A, Schwartz SD. Suprachoroidal
hemorrhage as an intraoperative
complication of 25-gauge pars
plana vitrectomy. Semin
Ophthalmol. 2007 Jul-
Sep;22(3):197-9.

Hubschman JP, Gonzales CR,
Bourla DH, Gupta A, Schwartz SD.
Combined 25- and 23-gauge
surgery: a new sutureless
vitrectomy technique. Ophthalmic
Surg Lasers Imaging. 2007 Jul-

David Rex Hamilton, MD, FACS
Samimi DB, Hamilton DR.
Recalcitrant epithelial ingrowth in
patients with compromised eyelid
May;24(5):544-6.

Sargsyan AE, Dulchavsky AG,
Adams J, Melton S, Hamilton DR,
Dulchavsky SA. Ultrasound
detection of simulated intra-ocular
foreign bodies by minimally trained
personnel. Aviat Space Environ

Gary N. Holland, MD
Levinson RD, Du Z, Luo L, Holland
GN, Rao NA, Reed EF, Rajalingam
R. KIR and HLA gene combinations
Hum Immunol. 2008 Jun;69(6):

Holland GN, Crespi CM, Ten Daman
Loon N, Charonis AC, Yu F,
Bosch-Driessen LH, Rothova A.
Analysis of recurrence patterns
associated with toxoplasmic
retinochoroiditis. Am J
Ophthalmol. 2008
Mar 17.

Levinson RD, Du Z, Luo L, Monnet
D, Tabary T, Brezin AP, Zhao L,
Gjertsen DW, Holland GN, Reed
EF, Cohen JH, Rajalingam R.
Combination of KIR and HLA gene
variants augments the risk of
developing birdshot
chorioretinopathy in HLA-A*29-
positive individuals. Genes Immun.
Mar 13.

Holland GN. AIDS and
ophthalmology: the first quarter
Mar;145(3):397-408. Review.

Joseph Horwitz, PhD

Sherwin J. Isenberg, MD
Isenberg SJ. The long term ocular alignment following adjustable suture strabismus surgery. Audio-Digest Ophthalmology. 2007 Nov; 45(21).

Allan E. Kreiger, MD

Simon K. Law, MD, PharmD

Ralph D. Levinson, MD

Kevin M. Miller, MD

Bartly J, Mondino, MD

Steven Nusinowitz, PhD

Natik I, Piri, PhD

Arthur L. Rosenbaum, MD

David Sarraf, MD

Steven D. Schwartz, MD

Bourla D, Gonzales CR, Schwartz SD. Systemic risk factors for the progression of laser treated retinopathy of prematurity to stage 4 or 5 disease. Retina, 2008; supplement.

Bradley R. Straatsma, MD, JD

Hui Sun, PhD
Gabriel H. Travis, MD

Barry A. Weissman, OD, PhD

Tara A. Young, MD, PhD

The Jules Stein Eye Institute, established in 1966, is dedicated to the preservation of sight and the prevention of blindness. Today, UCLA's vision scientists are extending the boundaries of current knowledge and approaching the goal for a lifetime of good vision for everyone, due in large part to a strong tradition of philanthropy from private sources.

Contributions from individuals, corporations, and foundations provide JSEI faculty with the resources necessary to consistently record noteworthy achievements in research, education, and patient care.

The Institute offers a variety of giving options to those who wish to contribute to this tradition of excellence.

How to Support the Jules Stein Eye Institute

Outright Gifts
Outright gifts—of cash, securities or other property—provide JSEI with much-needed financial assistance. Outright gifts have an immediate impact on JSEI's faculty research, education, and patient care programs because they can be used to support a variety of current needs.

Securities
A gift of long-term appreciated marketable securities helps you save taxes twice. Such a gift will provide an income-tax charitable deduction and capital gains tax savings.

Matching Gifts
Many corporations have demonstrated their support for JSEI by matching, or multiplying, their employees' gifts to the Institute, up to a set amount. Before you make a gift, you may want to ask whether your employer participates in such a program. Certain restrictions apply to matching gifts; please consult your company's personnel office.

Real Estate
When you give a gift of your home or real property to JSEI, you may claim an income-tax charitable deduction based on the full market value of the gift, avoid capital gains taxes, and eliminate certain costs associated with the transfer of real property. Gifts of real estate can also provide income to you.

Bequests
In writing a will, living trust, or other planned giving arrangements, donors can specify that they would like their estate to benefit JSEI.

Charitable Gift Annuity
Donors can transfer money, securities, or real estate in trust to JSEI and receive income for themselves or a loved one for life. Donors may receive immediate tax benefits, and JSEI ultimately receives the trust property.

Tribute Gifts
Contributions may be made in memory, honor, or celebration of a loved one, or to commemorate a special occasion. Donations can be used for unrestricted program support or be directed to any area of JSEI.

Endowments
A gift of an endowment demonstrates a long-term commitment to JSEI, since the fund is maintained in perpetuity. A portion of the annual investment income is used to support clinical, educational, and scientific initiatives and the remaining investment yield is returned to principal; thus, over the years, the fund can grow and provide continuous support.

An endowment serves as an enduring legacy as it can bear the donor's name, or can honor a loved one. These funds can be made payable for up to five years. Giving opportunities exist for endowed chairs; endowed fellowships; and endowed funds for research, education, and patient care.

However you choose to support JSEI, you will be embarking on a partnership with one of the world's preeminent eye research institutes. Such an investment will greatly expand our understanding of the causes of eye diseases, expose alternative treatment options, and ultimately prevent blindness. Your gift can make a difference.

For further information, please contact:
Jules Stein Eye Institute
Development Office
100 Stein Plaza
University of California, Los Angeles
Los Angeles, California 90095-7000
Phone: (310) 206-6035
Fax: (310) 794-1665
giving@jsei.ucla.edu