A Year in Review

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stein Eye Institute</td>
<td>2</td>
</tr>
<tr>
<td>Transitions</td>
<td>4</td>
</tr>
<tr>
<td>Honors and Awards</td>
<td>5</td>
</tr>
<tr>
<td>Research</td>
<td>8</td>
</tr>
<tr>
<td>Education</td>
<td>10</td>
</tr>
<tr>
<td>Community Outreach</td>
<td>13</td>
</tr>
<tr>
<td>Philanthropy</td>
<td>15</td>
</tr>
<tr>
<td>Thank You</td>
<td>18</td>
</tr>
<tr>
<td>Jules and Doris Stein</td>
<td>25</td>
</tr>
<tr>
<td>Board of Trustees and Executive Committee</td>
<td>26</td>
</tr>
</tbody>
</table>

Faculty

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>

Programs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Care Services</td>
<td>82</td>
</tr>
<tr>
<td>Research and Treatment Centers</td>
<td>84</td>
</tr>
<tr>
<td>Clinical Laboratories</td>
<td>89</td>
</tr>
<tr>
<td>Training Programs</td>
<td>91</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteer and Consulting Faculty</td>
<td>96</td>
</tr>
<tr>
<td>Residents and Fellows</td>
<td>98</td>
</tr>
<tr>
<td>Educational Offerings</td>
<td>99</td>
</tr>
<tr>
<td>Research Contracts and Grants</td>
<td>101</td>
</tr>
<tr>
<td>Clinical Research Studies</td>
<td>106</td>
</tr>
<tr>
<td>Publications of the Full-Time Faculty</td>
<td>112</td>
</tr>
<tr>
<td>Giving Opportunities</td>
<td>118</td>
</tr>
</tbody>
</table>
Dear Friends,

In November 1966 the doors of the Jules Stein Eye Institute opened on the grounds of UCLA, and with dedication of purpose, the Institute has continued to grow in its commitment to further vision-science research, ophthalmic education, and patient care. And last year, we celebrated the Stein Eye Institute’s transformation to a vision-science campus.

Exciting changes continue. This 2013–2014 academic year, we proudly announced a long-term affiliation agreement with the Doheny Eye Institute, possibly making us the nation’s—if not the world’s—largest academic eye affiliation. Through this partnership, we are utilizing our collective strengths to develop innovative eye care therapies, to educate world leaders in ophthalmology and vision science, and to establish novel research that can lead to impactful discoveries.

The clinical benefit of this affiliation was demonstrated in 2014, as patient access to eye care was expanded throughout the greater Los Angeles area and into the Orange County region, with Doheny Eye Center UCLA locations opening in Arcadia, Orange County, and Pasadena. Doheny physicians and scientists are now UCLA Department of Ophthalmology faculty members, and the Doheny ophthalmologists that patients and referring doctors know and trust, remain conveniently available—but now with the added backing of the UCLA Health System.

We proudly stand on the shoulders of the ophthalmologists and vision-science researchers who came before us. Through their work, and our charge to preserve and restore vision, we are continually building upon this legacy of excellence. Now with the historic alliance of the Stein and Doheny Eye Institutes, we can have an even greater and positive impact on our community, nation, and beyond—extending our efforts to transform vision science and technology, nationally and internationally.

I thank the exceptional donors and friends who share our dedication to the preservation of sight and the prevention of blindness and who contribute to our current and future accomplishments. Please enjoy our highlights of the 2013–2014 academic year.

Sincerely,

Bartly J. Mondino, MD

Bradley R. Straatsma, MD Endowed Chair in Ophthalmology
Director, Stein Eye Institute
Chairman, Department of Ophthalmology
David Geffen School of Medicine at UCLA
“Movements to advance science and medicine need the time, the effort, and the ability of those men and women who have learned to move the immovable mountain.”

Jules Stein, MD

A Year in Review

This 2013–2014 academic year was highlighted by the signing of a historic affiliation agreement between UCLA’s Stein Eye Institute and the Doheny Eye Institute—extending our combined efforts in vision science and technology, nationally and internationally. This year saw patients gaining greater access to the finest ophthalmologic care available, with the opening of three Doheny Eye Center UCLA locations. We have also welcomed new faculty and said goodbye to respected colleagues. Faculty members were recognized for their contributions to ophthalmology, and researchers made further inroads in vision-science investigations, increasing our knowledge of vision processes and eye diseases. Utilizing multidisciplinary, integrative education, faculty members mentored, counseled, lectured, and demonstrated new medical and scientific approaches to the next generation of ophthalmologists, further contributing to the preservation and restoration of vision around the world. And recognizing that private funding is critical to the advancement of science and medicine, generous donors provided needed support for the sight-saving endeavors of the Stein Eye Institute.
Stein and Doheny Eye Institute Sign Historic Affiliation Agreement

UCLA’s Stein Eye Institute and the Doheny Eye Institute have signed a long-term affiliation agreement to create the nation’s preeminent centers for ophthalmic patient care, vision research, and education. Each organization is preserving its identity and mission, while combining clinical and teaching and operations. And patient access to eye care is already expanding throughout greater Los Angeles and into Orange County. Under the terms of the agreement, Doheny physicians and scientists are UCLA Department of Ophthalmology faculty members.

The affiliation will utilize each organization’s strengths to establish novel research leading to impactful discoveries, to develop innovative eye care therapies, and to educate world leaders in ophthalmology and vision science. It also aligns strengths that have factored into world recognition for Stein Eye and Doheny—both organizations are consistently in the top-10 of the U.S. News & World Report Best Hospital Rankings for ophthalmology.

Prior to this affiliation, the Doheny Eye Institute had been associated with the University of Southern California. In early 2013, Doheny carefully considered proposals from distinguished universities and institutions across the country and selected UCLA’s Stein Eye Institute as its new academic partner. “By selecting UCLA and the Stein Eye Institute,” says Marissa Goldberg, Doheny chief operating officer, chief financial officer, and board member, “we gain complementary clinical, research, and educational strengths and the opportunity to better serve patients.”

“… The Stein/Doheny partnership makes sense. We share identical missions. We have a long history of cordial, mutually beneficial relations. Our locations support convenient collaboration, and this is a great opportunity for research and discovery. And, perhaps most significantly, together we will have a synergistic effect.”

Bartly J. Mondino, MD, Chairman of the UCLA Department of Ophthalmology and Director, Stein Eye Institute

Broadening Patient Access to Eye Care

Demonstrative benefits from the historic alliance were felt almost immediately, with three Doheny Eye Center UCLA locations opening in Arcadia, Orange County, and Pasadena in 2014, broadening patient access to eye care across the greater Los Angeles region and into Orange County.

The Doheny Eye Centers UCLA join the prestigious Stein Eye Institute in Westwood, the Stein Eye Center–Santa Monica, and the UCLA Department of Ophthalmology-affiliated teaching satellite hospitals: Veterans Affairs Greater Los Angeles Healthcare Center at West Los Angeles and Sepulveda, Harbor-UCLA Medical Center, and Olive View-UCLA Medical Center.

“…From the westside to the eastside and south to Orange County, patients throughout Los Angeles and neighboring regions now have access to the finest ophthalmologic care available,” says chairman of the UCLA Department of Ophthalmology and director of the Stein Eye Institute, Bartly J. Mondino, MD.
For patients and referring physicians, the board-certified Doheny ophthalmologists they know and trust remain accessible. Many Doheny Eye Institute researchers and clinicians are joining the faculty roster of the David Geffen School of Medicine at UCLA, uniting with Stein Eye Institute colleagues under a single, integrated UCLA Department of Ophthalmology.

With the opening of the Doheny Eye Centers UCLA, patients can continue to see their Doheny ophthalmologist—in the same familiar neighborhood—but now with the added backing of the UCLA Health System, one of the premier providers of modern medicine to the Los Angeles area and the nation.

And for referring physicians, the opening of the three Doheny Eye Center UCLA locations means that Doheny ophthalmologists remain a resource in the community, providing comprehensive and subspecialty eye care at a nearby locale. Like the Stein Eye Institute and its satellite centers, Doheny Eye Centers UCLA provide the finest in clinical care, diagnostic equipment, and treatment.

Stein Eye Center–Santa Monica Doubles in Size to Meet Patient Demand

The Stein Eye Center–Santa Monica, was established in 2011, and this year, the Center expanded its facilities, doubling in size to meet patient demand. It was apparent from the outset that patients welcomed world-renowned comprehensive and subspecialty eye care within their local community, explains the Center’s Medical Director Colin A. McCannel, MD, professor of clinical ophthalmology at the Stein Eye Institute. “Immediately upon opening, the Center was bursting at the seams, and it became clear that the practice was outgrowing the available area. Through a stroke of luck, space opened next door, and the Center easily and conveniently expanded its current footprint.”

The Stein Eye Center–Santa Monica doubled the number of exam rooms—from six to 12—and added a third diagnostic laboratory. The expansion also allowed the addition of a vital subspecialty—pediatric ophthalmology. “Monica R. Khitri, MD, is an excellent, highly trained pediatric ophthalmologist, and we are excited to welcome her to the Stein Eye family,” affirms Bartly J. Mondino, MD, director of the Stein Eye Institute. A second comprehensive ophthalmologist, Tania Onclinx, MD, who completed her fellowship in ophthalmology at the Stein Eye Institute, and a second optometrist, Melissa M. Willey, OD, round out the new staffing, broadening the number of patients who can now be served.
In Remembrance

Ronald E. Smith, MD
Vice Chairman, Doheny Eye Centers UCLA
October 7, 1942–March 17, 2014

Ronald E. Smith, MD, a great leader and academician, was an accomplished clinician-scientist whose achievements are legion. His research and clinical expertise centered in external eye disease, cornea, and uveitis.

Dr. Smith was a recipient of National Eye Institute grant support, served on Study Section, and authored more than 300 scientific publications. He was past president of the American Academy of Ophthalmology and served for more than 10 years on the Academy Board of Trustees. He was past chair and board member of the American Board of Ophthalmology and was a member of honorary societies, including the American Ophthalmological Society, Academia Ophthalmologica Internationalis, and the Johns Hopkins Society of Scholars. He received numerous awards, including the Light Award from the Braille Institute of America, the Gold Medal of the International Uveitis Study Group, the Castroviejo Medal of the Cornea Society, and the Lifetime Achievement Award of the American Academy of Ophthalmology.

Dr. Smith served as Chairman of the USC Keck School of Medicine Department of Ophthalmology from 1995 to 2013. He resigned from the USC faculty in November 2013 and became medical director of the Doheny Eye Institute preparatory to joining the UCLA faculty as vice chairman of the Doheny Eye Centers UCLA.

“Ron and I worked closely together as the affiliation between UCLA and Doheny began to be envisioned and evolve. Ron was extremely generous and supportive, and he elicited the best in everyone. With his passing, ophthalmology lost a wonderful friend and colleague.”

Bartly J. Mondino, MD
Chairman of the UCLA Department of Ophthalmology and Director of the Stein Eye Institute

New Faculty

Alapakkam P. (Sam) Sampath, PhD, was appointed associate professor-in-residence, effective October 1, 2013. Dr. Sampath was previously an associate professor at the Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, and Department of Ophthalmology, Keck School of Medicine at the University of Southern California. Dr. Sampath previously trained at UCLA as a graduate student with Gordon L. Fain, PhD, which he then followed with a postdoctoral fellowship at Stanford University and a second fellowship at the University of Washington.
Faculty Honors

- **Anthony J. Aldave, MD**, Walton Li Chair in Cornea and Uveitis, was awarded the gold medal for contributions to the field of ophthalmology by the Intraocular Implant and Refractive Society on September 8, 2013, in New Delhi, India. On September 19, 2013, Dr. Aldave delivered the Roger F. Meyer, MD, Lectureship in Cornea at the University of Michigan in Ann Arbor, Michigan.

- **Anthony C. Arnold, MD**, Jerome and Joan Snyder Chair in Ophthalmology, received the North American Neuro-Ophthalmology Society’s (NANOS) Distinguished Service Award, which was presented on March 5, 2014, at the NANOS Annual Meeting in San Juan, Puerto Rico. Dr. Arnold was also inducted into the American Ophthalmological Society on May 15, 2014, in New York, New York.

- **Gordon L. Fain, PhD**, Distinguished Professor of the Departments of Integrative Biology/Physiology and of Ophthalmology, was elected as a Fellow of the American Academy for the Advancement of Science on November 25, 2013, and elected as an Overseas Fellow of Churchill College Cambridge, April 2014–August 2014.

- **Lynn K. Gordon, MD, PhD**, Vernon O. Underwood Family Chair in Ophthalmology, received the David Geffen School of Medicine Excellence in Education Award on May 20, 2014, at UCLA, for leadership and commitment to ophthalmology education.

- **Gary N. Holland, MD**, Jack H. Skirball Chair in Ocular Inflammatory Diseases, was named a Gold Fellow by the Association for Research in Vision and Ophthalmology (ARVO), May 2014.

- **Wayne L. Hubbell, PhD**, Jules Stein Chair in Ophthalmology, was selected as a 2014 Fellow of the International EPR (ESR) Society in recognition of his influential and distinguished contributions to the practice of electron paramagnetic resonance (EPR)/electron spin resonance (ESR) spectroscopy and its welfare over a long period.

- **Sherwin J. Isenberg, MD**, Laraine and David Gerber Chair in Ophthalmology, delivered the Presidential Lecture, Combatting Pediatric Blindness in the 21st Century, at the All India Ophthalmological Conference on February 6, 2014, in Agra, India.

- **Bartly J. Mondino, MD**, director of the Stein Eye Institute and Bradley R. Straatsma, MD Endowed Chair in Ophthalmology, presented the Doheny Lecture, “Corneal Ulcers,” on June 20, 2014, at the Doheny Eye Institute in Los Angeles, California.

- **Steven D. Schwartz, MD**, holder of The Ahmanson Chair in Ophthalmology, was a featured specialist on The Charlie Rose Show series on the brain that aired April 22, 2014. In the public television episode devoted to blindness, Dr. Schwartz discussed current investigations in the use of stem cells for visual restoration.
Dr. Bartly J. Mondino Recognized for Leadership in Academic Ophthalmology

As Chairman of the UCLA Department of Ophthalmology and Director of the Stein Eye Institute, Bartly J. Mondino, MD, is responsible for leading the academic pursuits of the Institute’s faculty and trainees, while maintaining the highest standards in research, teaching, and patient care.

Dr. Mondino also holds active leadership roles outside of the Institute, setting a critical agenda for the advancement of ophthalmology and the prevention of blindness. In recognition of this work, the Association of University Professors of Ophthalmology (AUPO) recently lauded Dr. Mondino for ten years of service as AUPO executive vice president.

AUPO President Steven E. Feldon, MD, MBA, asked attendees to thank Dr. Mondino for all he had done on behalf of the AUPO, noting, “This is Bart’s last year as executive vice president, and all of us at AUPO owe him a special debt of gratitude for his leadership, devotion, grace, and good humor. He has taken our organization to a new level of performance and relevance.”

In his remarks, Dr. Mondino noted, “In this fast-changing and challenging health care environment, remaining both resilient and forward moving in academic ophthalmology is a daily challenge. In my work with outside organizations, I am privileged to be directly involved in creating policies that will serve and benefit the future of ophthalmology.”

AUPO Board of Trustees (left to right): Drs. Eduardo C. Alfonso (Chair, Department of Ophthalmology, University of Miami, Bascom Palmer Eye Institute), Oscar A. Cruz (Chair, Department of Ophthalmology, St. Louis University, St. Louis University Eye Institute), Bartly J. Mondino (Chair, Department of Ophthalmology, UCLA, Stein Eye Institute), Steven E. Feldon (Chair, Department of Ophthalmology, University of Rochester, Flaum Eye Institute), Russell Van Gelder (Chair, Department of Ophthalmology, University of Washington), and Randall J. Olson (Chair, Department of Ophthalmology, University of Utah, John A. Moran Eye Center). Not pictured: Drs. Julia A. Haller (Chair, Department of Ophthalmology, Thomas Jefferson University, Wills Eye Institute) and Keith D. Carter (Chair, Department of Ophthalmology, University of Iowa).
Dr. Bradley R. Straatsma Honored for Advancing Ophthalmology

At the April 2, 2014, Opening Ceremony of the World Ophthalmology Congress® in Tokyo, Japan, the Academia Ophthalmologica Internationalis (AIS) presented Bradley R. Straatsma, MD, JD, with the Bernardo Streiff Gold Medal. The medal is awarded every four years to an ophthalmologist who has contributed most to the advancement of ophthalmology through history, ethics, and education.

Dr. Straatsma has, for more than 50 years, contributed to the advancement of ophthalmology around the world. Founding Director of the Stein Eye Institute and Founding Chairman of the UCLA Department of Ophthalmology, Dr. Straatsma has served as president of many major ophthalmological organizations, including the American Academy of Ophthalmology (AAO), the Pan American Association of Ophthalmology, the AIS, and the Foundation of the International Council of Ophthalmology (ICO). His commitment to ophthalmic education worldwide is seen through many of the major activities undertaken by the organizations he has led. His training of ophthalmology residents and fellows, his editorship of the American Journal of Ophthalmology, his critical support leading to the creation of an international curriculum, his publications on ophthalmic education, and the establishment of the Straatsma Award to increase the quality of residency program leadership in the United States, are but a few examples of the major impact Dr. Straatsma has had globally on ophthalmic education.

Dr. Straatsma has received worldwide acclaim for his tireless work on behalf of ophthalmology. Recognition includes the Howe Medal of the American Ophthalmological Society, the Jules François Golden Medal from the ICO, an Honorary Doctor of Sciences degree from Columbia University, and the Laureate Award from the AAO.

Institute Honors

Stein Eye Institute Rated Best in the West

The Stein Eye Institute continued in its position as one of the top five American eye care centers—and the best in the Western United States for the 24th consecutive year—according to U.S. News & World Report’s 2013–2014 Best Hospitals rankings. Additionally, Ronald Reagan UCLA Medical Center is the only hospital in Los Angeles and the Southern California region that appears on the magazine’s “Honor Roll,” a place reserved for medical centers with high levels of expertise in multiple specialties. The Ronald Reagan UCLA Medical Center was ranked the number one hospital in California.

Edie & Lew Wasserman Building Wins the Gold!

The Edie & Lew Wasserman (ELW) Building has been officially awarded LEED Gold certification for the core and shell portion of the project. LEED, which represents Leadership in Energy and Environment Design, is an internationally recognized green building certification system that was developed by the U.S. Green Building Council in March 2000.

The achievement of receiving gold certification is truly a testament to the team collaboration and integrated approach to the design and construction of the ELW Building. LEED provides a framework for identifying and implementing practical and measurable green building design, construction, operations, and maintenance solutions. LEED Gold is the third award the ELW Building has received.
Research

Research is a key pillar of the Institute’s mission and a high priority for faculty who often devote their life’s work to furthering our knowledge of specific vision processes and eye diseases. In this academic year, Stein Eye researchers have made important discoveries and have continued to take leadership roles in defining how diseases are managed.

New Approach Improves Ability to Predict Which Glaucoma Patients Need Aggressive Treatment

One of the major challenges in the field of glaucoma has been reliably separating the patients who will progress rapidly—and thus need immediate and aggressive treatment—from those that will have a slow progression and may never lose vision. “We overtreat some patients and undertreat others,” says Joseph Caprioli, MD, David May II Endowed Chair in Ophthalmology, and chief of the Stein Eye Institute’s Glaucoma Division. “This is not a reflection of our competence, but of our limitations in identifying which patients are most likely to lose vision and how quickly.”

The problem with conventional approaches to predicting glaucoma progression, Dr. Caprioli says, is that they take the entire visual field into account—but, particularly in its early stages, glaucoma tends to inflict localized damage. “The nature of glaucoma damage is non-uniform progression,” Dr. Caprioli explains. “When you take global measures, looking at the average of all visual fields, you miss out on the regional change. The portion of the visual field that is affected is likely to decline at a faster rate than parts of the field that have been relatively spared.

Dr. Caprioli and colleagues have developed a software-based approach designed to take these factors into account. The system analyzes a sequence of visual fields, pinpoints the areas that are progressing the most rapidly, and then uses the data to predict future visual field outcomes if there is no change in treatment—enabling identification of patients who are at the greatest risk of losing vision.

Dr. Caprioli says his system quantifies what experienced glaucoma specialists have intuitively done in clinical exams. “You try to look for an area that might be getting worse and filter out the other measurements. But for a practitioner who does not do this every day, that qualitative process is much more difficult. The system provides them with a tool that is like having an ‘expert in a box.’”

Dr. Caprioli’s group has conducted multiple studies to validate the system’s ability to separate patients who will progress rapidly from those who will progress slowly. The first study, focusing on patients with substantial visual field damage, found that forecasts correlated well with measured outcomes over six or more years of follow-up. The second study involved patients with much less glaucoma damage and found the new system to be equally adept at identifying earlier-stage patients at high risk of rapid progression.

“We want to treat patients at the greatest risk of losing vision and spare patients who are likely to live out their lives with perfectly good vision. Knowing the rate of progression, we can make a better judgment about how aggressively that patient should be treated, if at all,” notes Dr. Caprioli.

Joseph Caprioli, MD
“Discovery consists of seeing what everybody has seen and thinking
what nobody has thought.”

Albert Szent-Györgyi, Hungarian Physiologist

Light-Adjustable Lens Technology a Potential “Game Changer”
for Cataract Patients

The Stein Eye Institute is participating in a national Phase 3 clinical trial of the Calhoun Vision Light-Adjustable Lens (LAL), the final test before the lens is approved for the U.S. market. The clinical trial, headed by Kevin M. Miller, MD, Kolokotrones Chair in Ophthalmology, and chief of the Stein Eye Institute’s Comprehensive Ophthalmology Division, promises to dramatically improve unaided visual acuity after cataract surgery.

An estimated 3 million cataract operations are done each year—a number that is expected to increase significantly as the U.S. population ages. For the many patients who end up with significant refractive errors following surgery, the only options for seeing clearly have been eyeglasses, contact lenses, or pursuing refractive surgery. Moreover, it has not been possible for cataract surgeons to predict which patients will be left with refractive errors.

Preliminary data indicate that on average, however, patients with LAL implants are experiencing better than 20/20 uncorrected vision. “That just doesn’t happen in other cataract trials,” Dr. Miller notes. “With the LAL, we wait until the eye is completely healed and then we adjust the lens. It means we just have to be close, not perfect, in the original procedure. This is a complete game-changer.”

The unique chemistry of the LAL material enables ophthalmologists to adjust the power of the implanted lens after the surgery through the noninvasive application of light before “locking in” the changes. “This technology will enable cataract patients to have the types of refractive outcomes previously experienced only by patients who have LASIK,” says Dr. Miller. “The odds of achieving 20/20 or better uncorrected visual acuity after cataract surgery will go up dramatically. That’s very exciting.”

After the LAL lens is implanted, if the power turns out to be slightly off kilter—preventing the patient from experiencing 20/20 uncorrected vision—the cataract surgeon can irradiate the lens with a precise pattern of UV light. (The back of the lens has a UV filter, preventing the ultraviolet light from reaching and potentially damaging the retina.) This can be done multiple times, if necessary, until the power is optimal, before the lens is locked into its final form. Patients are instructed to wear special eyeglasses that block ambient UV rays until the adjustments and lock-ins are completed.

Dr. Miller points out that the technology promises to only improve with time. While the current lens is monofocal, the next step after FDA approval would be to add multifocality to the platform. Future generations of the technology, currently in the research pipeline, may allow for continuous adjustment, ensuring that patients can remain eyeglass-free for the rest of their lives.

“The potential for the light-adjustable lens is enormous,” says Dr. Miller. “There are incremental technologies and there are disruptive technologies. This is disruptive—it has the ability to change everything.”
Education

Education at the Stein Eye Institute is multifaceted—ranging from teaching medical students, residents, and fellows—to leading national conferences. In the course of their educational duties, faculty members mentor, counsel, lecture, and demonstrate. They are responsible for hundreds of clinical and scientific publications each year and are entrusted with developing and sharing new approaches to science and medicine that will ultimately result in improved patient care.

Annual Clinical and Research Seminar

Ophthalmologists gathered at the Stein Eye Institute on June 13, 2014, for the Institute’s most prestigious annual academic event, the Clinical and Research Seminar. Sponsored by the UCLA Department of Ophthalmology Association, the Seminar provides an opportunity for discussion of emerging vision research and celebrates teaching and faculty volunteerism.

At this year’s Seminar, Steven E. Feldon, MD, MBA, director of the Flaum Eye Institute and chairman of the Department of Ophthalmology at the University of Rochester in Rochester, New York, presented the 45th Jules Stein Lecture; Lois E. H. Smith, MD, PhD, professor of ophthalmology at Harvard Medical School and clinician/scientist at Children’s Hospital in Boston, Massachusetts, gave the 12th Bradley R. Straatsma Lecture; and Amani A. Fawzi, MD, associate professor of ophthalmology at Northwestern University in Chicago, Illinois, delivered the 12th Thomas H. Pettit Lecture.

In recognition of their service, selected volunteer and clinical faculty received awards of distinction. The Faculty Teaching Award, honoring contributions to residency education, was presented to Clinical Instructor in Ophthalmology Laura Bonelli, MD. Senior Honor Awards were presented to Peter J. Cornell, MD, Yadavinder P. Dang, MD, and Kathryn M. Gardner, MD, distinguished volunteer faculty who have been members of the UCLA Department of Ophthalmology for at least 25 years.

Comprehensive Ophthalmology Review Course

The Stein Eye Institute and the Doheny Eye Institute teamed up to sponsor the ninth Comprehensive Ophthalmology Review course on February 20–23, 2014. The course co-directors, Sherwin Isenberg, MD, Laraine and David Gerber Chair in Ophthalmology at the Stein Eye Institute, and John Irvine, MD, medical director of the Doheny Eye Centers UCLA, organized a program concentrating on the epidemiology, clinical presentation, diagnosis, and management of ophthalmological disease.

“There is a single light of science, and to brighten it anywhere is to brighten it everywhere.”

Isaac Asimov, American Author and Professor of Biochemistry
19th Annual Vision Science Conference

The 19th annual Vision Science Conference, co-sponsored by the National Institutes of Health/National Eye Institute Vision Science Training Grant and the Stein Eye Institute, was held October 24–26, 2013. More than 80 basic scientists and clinical researchers gathered at UCLA’s Lake Arrowhead Conference Center to participate in scientific discussions and memorable networking events.

Phil Kellman, PhD, professor, Department of Psychology, UCLA, presented the lecture “From Fragments to Objects: Visual Object Formation Across Gaps in Space and Time.” Robert Marc, PhD, director of research, Moran Eye Center, University of Utah, discussed “Building Retinal Connectomes.” And Marti Arvin, JD, compliance officer, UCLA Health System and David Geffen School of Medicine, offered a thought-provoking lecture on the ethical dilemmas with data collection, creation, and use, which considered who has the rights to the data, how much control a subject should have over additional use, and what are the researcher’s obligations when research creates additional information about a subject.

Aesthetic Eyelid and Facial Rejuvenation Course

The Orbital and Oculoplastic Surgery Division held its annual Aesthetic Eyelid and Facial Rejuvenation course July 19–20, 2013, at the Stein Eye Institute. The event attracted ophthalmologists, dermatologists, and cosmetic surgeons from around the world. The two-day event combined surgical demonstrations, a cadaver dissection, and didactic lectures that informed participants of the latest advances in the field of aesthetic and reconstructive surgery for the eyelids and face.

Distinguished Stein Eye Institute volunteer faculty members, Bruce B. Becker MD, and Jerome R. Klein, MD, were each presented the Senior Teaching Award. Raymond S. Douglas, MD, PhD, associate professor of ophthalmology and visual sciences at the University of Michigan’s Kellogg Eye Center, presented the Robert Axelrod, MD, Memorial Lecture. Dr. Douglas conducted his fellowship in orbital facial plastic and reconstructive surgery at the Stein Eye Institute.
Optometric Symposium on Advances in Eye Care

Optometrists from across California traveled to the Stein Eye Institute on January 26, 2014, to attend the 16th Annual Stein Eye Institute and Marshall B. Ketchum University joint Optometric Symposium on Advances in Eye Care. Course Chairman Melissa W. Chun, OD, associate clinical professor of ophthalmology, organized the program that included lectures presented by: Michael B. Gorin, MD, PhD, Stacy L. Pineles, MD, Mark H. Sawamura, OD, Irena Tsui, MD, Barry A. Weissman, OD, PhD, and Stanley Woo, OD, MS, MBA.

Pediatric Division Hosts Meeting to Commemorate Dr. Leonard Apt

The Stein Eye Institute Pediatric Division organized and hosted a full-day meeting on April 1, 2014, commemorating the late Leonard Apt, MD, a founding member of the Institute and the first physician to become board certified in both pediatrics and ophthalmology.

More than 40 invited speakers presented timely or controversial material in a rapid-paced format. This is the third time the Pediatric Division has hosted this event, which was held a day prior to the start of the American Association for Pediatric Ophthalmology and Strabismus Annual Meeting in Rancho Mirage, California.

Master’s Orbital Surgery Symposium

The Orbital and Ophthalmic Plastic Surgery Division hosted a Master’s Symposium on Orbital Surgery February 7–8, 2014. The first day of the course was a laboratory session of cadaver dissection, including faculty prosections and hands-on training under faculty guidance. The second day included didactic lectures and case presentations.

The division faculty and guest lecturers, including Raymond S. Douglas, MD, Jeremiah P. Tao, MD, and Jonathan W. Kim, MD, joined course directors Jack Rootman, MD, and Robert Alan Goldberg, MD. Catherine J. Hwang, MD, and Mehryar (Ray) Taban, MD, chaired the laboratory section.

The course brought more than 60 participants from across the world, including Brazil, Canada, Colombia, Greece, Iran, Lebanon, Mexico, Netherlands, Spain, Switzerland, Turkey, and the United Kingdom. Many of the attendees were experienced and well-known orbit surgeons, which resulted in a high level of interchange of knowledge and collegiality. The success of the course draws from the innovative talent of the Stein Eye Institute’s internationally known faculty, combined with premier facilities for both the laboratory and didactic components of the symposium.
Community Outreach

Much of the Stein Eye Institute’s reputation springs from its innovative vision research, which translates into first-class patient care, including care of those in underserved communities. The Institute’s volunteer arm, the Jules Stein Eye Institute (JSEI) Affiliates, is a broad-based network of volunteers, donors, staff, faculty, fellows, and residents who participate in vision education and patient-care programs throughout Los Angeles. Information about the JSEI Affiliates can be found on the Affiliates website: www.jseiaffiliates.com; on Facebook: www.facebook.com/JSEIAffiliates; via email: affiliates@jsei.ucla.edu; or by calling 310-825-4148.

UCLA Mobile Eye “Pop-up Clinics” Provide Vision Care to Community Schools

The Stein Eye Institute implemented three new “pop-up clinics,” designed to go where the UCLA Mobile Eye Clinic cannot: small preschools in densely populated areas with limited parking and narrow driveways. The Stein Eye Institute received a $4.1 million grant from First Five LA in 2012 to provide free vision screenings to 90,000 preschoolers in underserved areas of Los Angeles County by 2017, and the pop-up clinics help serve that mission.

Two boxes the size of laundry baskets hold all the portable equipment needed for an ophthalmologist and an ophthalmic assistant to provide children with dilated eye examinations, prescriptions for eyeglasses, and referrals for further care. The vision teams travel by car with the equipment and set up the pop-up clinics in spare rooms of qualified preschools.

“In some areas of Los Angeles, we cannot navigate or park our 40-foot-long bus,” says Faye Oelrich, program manager of the UCLA Mobile Eye Clinic, a community outreach program of the Stein Eye Institute. “We tried to get parents to bring their children to one centralized location for eye examinations, but that required them to travel from their neighborhoods and possibly miss work, which can be a huge barrier to receiving care. The beauty of the pop-up clinics is that we can jump in a car and go to the children.”

“We now know that kindergarten is too late to screen children for vision problems,” says Anne L. Coleman, MD, PhD, Fran and Ray Stark Foundation Chair in Ophthalmology and director of the UCLA Mobile Eye Clinic. “If children need eyeglasses, they need them at three years of age to prevent them from getting a lazy eye or an eye that never sees well. While pediatricians can identify some children who need eyeglasses, our screening notices subtle differences that could have long-term effects on a child’s vision.”

About 17 percent of the children screened need further evaluation, and approximately 9 percent need eyeglasses.
Jules Stein Eye Institute Affiliates: Helping our Community and Raising Awareness

Make Surgery Bearable Program
This year, the JSEI Affiliates in collaboration with the Pediatric Ophthalmology and Strabismus Division, introduced a children’s book, *Making Eye Surgery Bearable*. The book helps pediatric patients feel more comfortable about the surgical experience by providing age-appropriate information about what they can expect when they come to the Stein Eye Institute. *Making Eye Surgery Bearable* is given to all young children scheduled for eye surgery at the Institute.

Two successful sponsorship events were held this year for the Make Surgery Bearable program. This initiative provides Dr. Teddy bears to each pediatric patient undergoing eye surgery at the Stein Eye Institute. The bears are tagged with the name of the donor, and help children feel comforted and secure during what could otherwise be a frightening time.

MagniVision Program
The Affiliates MagniVision program provides financial and volunteer support for the UCLA Vision Rehabilitation Center (VRC). Volunteers train low-vision patients on the use of magnifiers and various vision aids, and financial assistance from the Affiliates enables purchase of low-vision tools for the VRC lending library.

Preschool Vision Screening
The Affiliates Preschool Vision Screening program began 14 years ago with the inspiration and support of Mrs. Glorya Kaufman. Under the supervision of the late Dr. Leonard Apt, founding chief of the Division of Pediatric Ophthalmology and Strabismus, initially just a handful of local preschoolers were screened for simple refractive errors and eye muscle problems. In the intervening years, the program has grown substantially. During the 2013–2014 school year, 35 Affiliates volunteers, under the supervision of five retired optometrists, visited 24 preschools to screen 842 children between three and five years of age.

Shared Vision Program
The Affiliates Shared Vision program collected and recycled approximately 2,800 donated eyeglasses for those in need this year. Recycled eyeglasses were cleaned, tagged with the vision correction, and distributed to clinic missions conducted by nonprofit groups in Africa, Central America, and other developing nations.

Vision Education
Vision IN-School (VIS) is a vision education program offered free of charge to fourth- through seventh-grade students in Los Angeles. The curriculum is fun and interactive, covering the anatomy of the eye, the developing eye and possible eye problems, eye care and eye safety tips, and optical illusions. One of the presentation highlights is the dissection of a cow eye. VIS volunteers visited nine different schools this past year, presenting the curriculum to over 400 elementary students. The program’s goal is to create a greater awareness of vision and the eyes, thus inspiring the children to protect their precious gift of sight for a lifetime of good vision.

Vision Walk
On October 26, 2013, the Affiliates participated in the seventh annual Los Angeles Foundation Fighting Blindness Vision Walk, which was held at Griffith Park. The Stein Eye Team, “Volunteers with Vision,” walked the five-kilometer route with approximately 400 other participants to raise awareness and more than $100,000 to advance retinal eye disease research.
Established in 1966 through the remarkable insight and philanthropy of Dr. and Mrs. Jules Stein, the Stein Eye Institute continues to advance and expand its programs and facilities. Private support is critical for scientific innovations, exceptional education and training, and the finest, most compassionate therapeutic approaches. This fiscal year, hundreds of donors generously supported the Institute’s sight-saving endeavors.

Dr. Walton Li: A Distinguished Alumnus Gives Back

The Chinese philosopher Zhuang Zi said, “Life is finite, while knowledge is infinite.” Exemplifying this tenet, Walton Li, MD, advanced the wisdom gained from his family before him to future generations, with a $2-million gift to create the Walton Li Chair in Cornea and Uveitis to support the teaching and research activities of the division chief in perpetuity, as well as create novel programs. “This chair was donated in my name,” explains Dr. Li, “because I greatly benefited from the education and training I received at UCLA. My total experience at UCLA shaped my being.”

Stein Eye Institute Director and second Division Chief in Cornea, Bartly J. Mondino, MD, has known Dr. Li for decades and reflects on the gift’s impact, “Dr. Li’s tremendous donation will provide continuity of funding for the Institute and leave a legacy for future leaders in ophthalmology. It will benefit the teaching and research endeavors of the Cornea and Uveitis Division Chief, and underwrite graduate students and postdoctoral fellows, staff and services, and special projects. Furthermore, the endowment will provide financial resources that will allow for the exploration of promising new areas of research.”

Dr. Li Shu Fan—Dr. Walton Li’s uncle and role model—was the first doctor in the Li family, and in 1911, he became the first Health Minister of China after the Chinese Revolution. In 1926, Dr. Li Shu Fan was invited to reorganize the first private hospital in Hong Kong, established in 1922. Now known as the Hong Kong Sanatorium and Hospital (HKSH), Dr. Li Shu Fan was the hospital’s chairman of the board of directors and medical superintendent during the ensuing forty years. Dr. Walton Li’s father and another uncle—both physicians—ran the HKSH upon the passing of Dr. Li Shu Fan in 1966.

Dr. Li earned his medical degree from UCLA in 1974, and he completed both his residency (1978) and fellowship (1979) in cornea and uveitis at the Institute. In 1980, he established and has since been head of the Department of Ophthalmology at the HKSH. In 2005, he was elected chairman of the board of directors and was appointed as medical superintendent, positions he still holds today. Dr. Li is also chairman of the Li Shu Fan Medical Foundation, an organization that supports HKSH and has endowed several professorships at universities in Hong Kong.

Dr. Li’s gift is directly related to the world-class training he received at the Institute and two of his mentors he found particularly inspiring: Thomas H. Pettit, MD, the first Division Chief in Cornea, and Bradley R. Straatsma, MD, JD, the founding director of the Institute. “Dr. Straatsma took a personal interest in my professional and personal development and played a major role in my decision to become an ophthalmologist,” says Dr. Li.
Dr. Li credits UCLA for his professional success: “Those years [at UCLA] provided me with a good foundation, strong general medical knowledge, and experience, all of which I use in my leadership role at the HKSH. My training enabled me to establish a good eye service in Hong Kong, and to start a department of ophthalmology. We now have 10 eye doctors with various subspecialty expertise—one of the strongest and largest eye departments in Hong Kong.”

Dr. Li’s establishment of the Walton Li Chair in Cornea and Uveitis was a natural culmination of his enduring connection to UCLA. As a world-renowned specialist in his field, Dr. Li understands the importance of supporting cutting-edge research and training the next generation of ophthalmologists. “Training and exposure make a difference in patient care,” he affirms. “The future of health care depends on how well we train and prepare future generations of doctors. Supporting the university will ensure that we have the best professors and advancements in research and medical care.”

Dr. Mondino concludes, “Through the establishment of the Walton Li Chair in Cornea and Uveitis, Dr. Li further honors our University and Institute by providing support for clinicians and vision-science researchers to pursue improved treatments for disorders of the anterior segment of the eye. My colleagues and I are grateful for and humbled by his generosity.”

May Family Continue Legacy Through Fellowship

UCLA has benefited for decades from the generous philanthropic involvement of the May family; and the family has made another generous commitment through the Wilbur May Foundation to honor the late Mr. Wilbur D. May, third son of Mr. David May, founder of The May Department Stores Company. This most recent gift will establish the Wilbur D. May Fellowship in the Department of Ophthalmology and the Stein Eye Institute at the David Geffen School of Medicine at UCLA. “The May family has long been a pillar of support to Stein Eye and we are honored to have such patronage and friendship,” says Bartly J. Mondino, MD, director of the Stein Eye Institute and chairman of the UCLA Department of Ophthalmology. “Their generous investment will have a significant impact on the training of fellows and the advancement of ophthalmology.”

The Wilbur May Foundation has an enduring history of dedicated involvement with the Stein Eye Institute. Mr. Wilbur May was the beloved uncle of Mr. David May II, past president of the Wilbur May Foundation and one of six original members of the Stein Eye Board of Trustees. The May Family has demonstrated their commitment to Stein Eye training and education programs for decades through the creation of scholarships benefiting residents, fellows, and faculty: The David May II Chair in Ophthalmology was established in 1998 to perpetuate in memoriam Mr. May’s association with the Stein Eye Institute; and the David May II Fellowship Fund was established in 1992 to support advanced study and research in ophthalmology and vision sciences.

Today, Mr. David May II’s widow, Mrs. Dee May, and their children Mrs. Amanda May-Stefan, Ms. Alysia May, Mrs. Dalynn May, Ms. Tommee May, Mrs. Anita May Rosenstein, Mrs. Kathy May Fritz, and grandson Mr. Brian Rosenstein, remain invested in philanthropy. The Wilbur May Foundation is led by the foundation’s President, Mrs. Anita May Rosenstein and Vice Presidents, Ms. Dixie May, Mrs. Dee May, Mrs. Kathy May Fritz, Mrs. Amanda May Stefan, Ms. Alysia May, Ms. Tommee May, and Mr. Brian Rosenstein. After consulting with Dr. Mondino and M. Gail Summers, director of Development, last fall, and motivated by Stein Eye’s tradition of excellence in clinical care, vision science, and education of future ophthalmologists, the May family decided to renew their support and honor Mr. Wilbur May’s legacy through a Fellowship gift.
Payden Family Honor Brother With Philanthropic Gift

A generous gift made through the William R. Payden Fund has established the William R. Payden Fund for Glaucoma Research at UCLA’s Stein Eye Institute. This meaningful gift will support the research of Joseph Caprioli, MD, David May II Endowed Chair in Ophthalmology and chief of the Glaucoma Division. “We are very excited by the potential of the fund,” says Bartly J. Mondino, MD, director of the Stein Eye Institute and chairman of the UCLA Department of Ophthalmology. “The Payden family’s loyal commitment allows the Institute to pursue critical advances in education and research for the Glaucoma Division.”

The fund represents a continuation of an important Payden family legacy supporting the vision sciences. Ms. Joan Ann Payden, CFA, knew that her beloved brother, Mr. William R. Payden, had wished to create this fund during his lifetime so that Dr. Caprioli and his team could continue dedicating their efforts to finding new advances for the early detection and treatment of glaucoma and in providing the highest quality care available for patients inflicted with this disease. The creation of this fund in his memory allows Mr. Payden’s wishes to come to fruition. “Independent, unrestricted support is essential for developing new clinical protocols with which to treat glaucoma. Bill Payden was an astute and keen student of glaucoma research, and I believe he would enthusiastically approve of the work that will be conducted with the help of these funds,” says Dr. Caprioli.

Mr. Payden lived a life full of intellectual curiosity and supported his various passions in music, film, sports, aviation, and philanthropy. He attended the University of Notre Dame and graduated from the University of Colorado where he majored in journalism. Mr. Payden was a reporter and feature writer for the Mamaroneck, New York, Daily News, as well as a public relations associate for a variety of industries in Southern California. Later in life, Mr. Payden found his vocation in education and was a journalism professor until he retired from college instruction. He may be most memorialized for his dedication to his students and unquestioned credibility.

Mr. Payden passed away in 2013. Through the creation of this fund, Ms. Payden further honors her brother’s legacy and support of education.
We are grateful for the generous and steadfast support the Stein Eye Institute receives for research, education, patient care, and outreach activities. This investment has a positive impact on ophthalmology, related disciplines at UCLA, and throughout the broader vision community. Thank you for your commitment to advancing eye research and treatment for the preservation and restoration of vision throughout the world.

Major Gifts over $25K:

Abbott
The Ahmanson Foundation
Anonymous
Diane and Robert Bigelow
Peter S. Bing, MD
Bruce Ford and Anne Smith Bundy Foundation
The Carl & Roberta Deutsch Foundation
David Fett, MD
Randi Levine Fett
Carol and Timothy W. Hannemann
Tom and Mary Ann Hays
Heidelberg Engineering
Estate of Eileen H. Hess
John and Susan Hess
Katrina vanden Heuvel
William & Margaret Fern Holmes Family Foundation
The Karl Kirchgessner Foundation
Knights Templar Eye Foundation, Inc.
Walter Lantz Foundation
David and Susan Leveton, Ann C. Rosenfield Fund
Bert O. Levy
Lin Hsiung Chen Memorial Scholarship Foundation
Macula Vision Research Foundation
Wilbur May Foundation
The Nicholas Endowment
Gail and Jerry Oppenheimer
Gerald Oppenheimer Family Foundation
William R. Payden
Research to Prevent Blindness, Inc.
Albert Sarnoff
The Gerald Schwartz & Heather Reisman Foundation
Beth and David Shaw
The Simms/Mann Family Foundation
The Skirball Foundation
Allan E. Smidt and Dorothy Lou Smidt
Jerome and Joan Snyder
Bradley and Ruth Straatsma
Norman and Alice Tulchin
Vision of Children Foundation, Sam and Vivian Hardage, Co-Founders
Pat and Joe Yzurdiaga
The following individuals were honored with a tribute gift this past year:

In Honor of:
Anthony J. Aldave, MD
John D. Bartlett, MD
Ilene S. Berg
Anne M. Bodenheimer
Joseph Caprioli, MD
Joseph L. Demer, MD, PhD
Scott Feiler, MD
Carol H. Gillis
Robert Alan Goldberg, MD
Michael B. Gorin, MD, PhD
Carole Hamburger
Jean-Pierre Hubschman, MD
Nancy Kramer
Allan E. Kreiger, MD
Jule D. Lamm, OD
Kevin M. Miller, MD
George E. Moss
Bradley R. Straatsma, MD, JD

In Memory of:
Peggy L. Giambrocco

Endowed Chairs and Fellowships

ENDEWDED CHAIRS

The Ahmanson Chair in Ophthalmology
Established in 2005 by The Ahmanson Foundation as an administrative chair for the Retina Division Chief to further research, education, and clinical care programs

Steven D. Schwartz, MD
2007–Present

Leonard Apt Endowed Chair in Pediatric Ophthalmology
Established in 2003 by Professor Emeritus of Ophthalmology and Founding Director of the Division of Pediatric Ophthalmology and Strabismus, Dr. Leonard Apt, with a gift from the trust of Frederic G. Rappaport, Dr. Apt’s nephew

Joseph L. Demer, MD, PhD
2005–Present

Karen and Frank Dabby Endowed Chair in Ophthalmology
Established in 2007 by Dr. and Mrs. Dabby as a term chair to support the activities of a distinguished faculty member in the area of orbital disease

Robert Alan Goldberg, MD
2008–Present

Charles Kenneth Feldman Chair in Ophthalmology
Established in 1982 by various donors in memory of Charles Kenneth Feldman, an entertainment industry executive

Robert D. Yee, MD
Professor 1984–1987

Hillel Lewis, MD
Scholar 1989–1993

Gabriel H. Travis, MD
2001–Present

Laraine and David Gerber Chair in Ophthalmology
Established in 1998 as a term chair by Mr. and Mrs. Gerber and converted to a permanent chair in 2007 with an additional pledge

Joseph L. Demer, MD, PhD
2000–2004

Sherwin J. Isenberg, MD
2004–Present

Dolly Green Chair of Ophthalmology
Established in 1980 by Ms. Dorothy (Dolly) Green

Dean Bok, PhD
1984–Present

Ernest G. Herman Chair in Ophthalmology
Initiated in 2007 by Mr. Ernest G. Herman to support a vision scientist or a clinician-investigator

Xian-Jie Yang, PhD
2012–Present
Karl Kirchgessner Foundation Chair in Vision Science
Established in 2001 as a term chair by a colleague of Dr. Jules Stein to promote basic-science research initiatives
Debora B. Farber, PhD, DPhhc
2001–Present

Kolokotrones Chair in Ophthalmology
Established in 2004 by Wendy and Theo Kolokotrones to support the teaching and research of a cataract surgeon and scientist
Kevin M. Miller, MD
2005–Present

Grace and Walter Lantz Endowed Chair in Ophthalmology
Established in 1991 as a term chair by Mr. and Mrs. Lantz and converted to a permanent chair in 2010 with an additional pledge
J. Bronwyn Bateman, MD
1993–1995
Sherwin J. Isenberg, MD
1993–1995
Joseph L. Demer, MD, PhD
1999–2004
Joseph L. Demer, MD, PhD
2004–2005

Walton Li Chair in Cornea and Uveitis
Established in 2013 by Walton W. Li, MD, as an administrative chair for the Cornea and Uveitis Division chief to further research and teaching activities
Anthony J. Aldave, MD
2014–Present

David May II Endowed Chair in Ophthalmology
Established in 1998 as a term chair by the family of Mr. David May II, a founding member of the Institute’s Board of Trustees, to perpetuate, in memoriam, Mr. May’s association with the Stein Eye Institute and converted to a permanent chair with an additional pledge from the Wilbur May Foundation
Gary N. Holland, MD
1999–2004
Joseph Caprioli, MD
2004–Present

Oppenheimer Brothers Chair
Established in 2002 as a term chair by the Oppenheimer Brothers Foundation
Joseph Horwitz, PhD
2003–Present

Harold and Pauline Price Chair in Ophthalmology
Established in 2000 by the Louis and Harold Price Foundation and converted to a permanent chair in 2006 with an additional pledge
Michael B. Gorin, MD, PhD
2006–Present

Arthur L. Rosenbaum, MD Chair in Pediatric Ophthalmology
Established in 2005 by Mr. and Mrs. Gottlieb as an administrative chair for the Division of Pediatric Ophthalmology and Strabismus, in honor of the late Dr. Arthur L. Rosenbaum
Arthur L. Rosenbaum, MD
2008–June 2010

Jack H. Skirball Chair in Ocular Inflammatory Diseases
Initiated in 2007 by The Skirball Foundation in honor of Jack H. Skirball’s long-standing friendship with Dr. Jules Stein and Lew Wasserman
Gary N. Holland, MD
2009–Present

Jerome and Joan Snyder Chair in Ophthalmology
Established in 2007 by Mr. and Mrs. Snyder to support the activities of a distinguished faculty member who directs the Ophthalmology Residency Program, ensuring that UCLA’s accredited program continues to offer rigorous and comprehensive instruction for individuals of the highest caliber
Anthony C. Arnold, MD
2008–Present

Joan and Jerome Snyder Chair in Cornea Diseases
Established in 2012 by Mr. and Mrs. Snyder to support the activities of a distinguished faculty member in the area of corneal diseases and research

The Fran and Ray Stark Foundation Chair in Ophthalmology
Established in 1992 as a term chair by the Fran and Ray Stark Foundation and converted to a permanent chair in 2007 with an additional commitment
Joseph Caprioli, MD
1997–2004
Anne L. Coleman, MD, PhD
2004–Present

Jules Stein Chair in Ophthalmology
Established in 1982 as a memorial tribute to Dr. Jules Stein by his many friends, with the leadership of Mr. Samuel Goldwyn, Jr.
Wayne L. Hubbell, PhD
1983–Present

Bradley R. Straatsma, MD Endowed Chair in Ophthalmology
Established in 1994 to honor Founding Director of the Stein Eye Institute, Bradley R. Straatsma, MD, JD
Bartly J. Mondino, MD
2000–Present
Vernon O. Underwood Family Chair in Ophthalmology
Established in 1995 as a term chair by Mrs. Adrienne Underwood Pingree in memory of her late husband, Mr. Vernon O. Underwood
John R. Heckenlively, MD
1997–2004
Gary N. Holland, MD
2004–2009
Lynn K. Gordon, MD, PhD
2012–Present

Edith and Lew Wasserman Professor of Ophthalmology
Established in 1977 by Edie and Lew Wasserman to honor Dr. Jules Stein
Manfred Spitznas, MD
1979–1981
Bartly J. Mondino, MD
Scholar 1984–1988
Professor 1988–2000
Ben J. Glasgow, MD
2003–Present

ENDOWED FELLOWSHIPS
Rosalind W. Alcott Fellowship
Established in 1978 by the Rosalind W. Alcott Charitable Remainder Trust for the training of outstanding postdoctoral fellows
Ryan St. Clair, MD
2013–2014

Leonard Apt Endowed Fellowship in Pediatric Ophthalmology
Established in 2002 by Founding Chief of the Pediatric Ophthalmology and Strabismus Division, Leonard Apt, MD, to support outstanding clinical fellows in the field of pediatric ophthalmology and strabismus
Anika Tandon, MD
2013–2014

Thelma and William Brand Director’s Fund
Established in 2004 with a trust from Mr. William F. Brand to benefit worthy students at the Stein Eye Institute
Joshua Udoetuk, MD
2013–2014

Cooperman Fellowship Fund
Established in 1988 by the Coopers to support eye research and education, with emphasis on clinical ophthalmology
Joshua Udoetuk, MD
2013–2014

David and Randi Fett Orbital and Ophthalmic Plastic Surgery Fellowship Endowment
Established in 2013 by Dr. and Mrs. Fett to support fellows in the Orbital and Ophthalmic Plastic Surgery Division

Klara Spinks Fleming Fellowship Fund
Established in 1985 by Klara Spinks Fleming to support cataract research
Rosalind Vo, MD
2013–2014
Frances Howard Goldwyn Fellowship
Established in 1977 by Mr. Samuel Goldwyn, Jr., with gifts from Mrs. Goldwyn’s estate and Dr. and Mrs. Jules Stein
Alena Reznik, MD
2013–2014

Elsa and Louis Kelton Fellowship
Endowed by the Keltons in 1982 to support postdoctoral research and training
Payam Morgan, MD
2013–2014

Bert Levy Research Fellowship Fund
Established in 1995 by Mr. Bert Levy to enhance the educational opportunities of vision science scholars and advance research in neuro-ophthalmology

Wilbur D. May Fellowship
Established in 2013 by the May family as a tribute to Mr. Wilbur D. May, the beloved uncle of Mr. David May II.

David May II Fellowship Fund
Established in 1992 by the family of Mr. David May II to support advanced study and research in ophthalmology and vision science
Renu Jivrajka, MD
2013–2014

John and Theiline McCones Fellowship
Established in 1989 by the McCones to support and enhance education programs and fellowship training in macular disease
David Cupp, MD
2013–2014
Sujit Itty, MD
2013–2014

Abe Meyer Memorial Fellowship Fund
Established in 1969 by various donors to support clinical fellows at the Institute
Saradha Iragavarapu, MD
2013–2014

Adelaide Stein Miller Research Fellowship
Established in 1977 by Mr. Charles Miller as a tribute to Dr. Jules Stein’s sister
Erica Oltra, MD
2013–2014

Harold and Pauline Price Fellowship
Established in 1986 by the Louis and Harold Price Foundation to support research and education in ophthalmology and vision care
Anika Tandon, MD
2013–2014

Frederic G. Rappaport Fellowship in Retina/Oncology
Established in 2004 by Mrs. Jeanne A. Rappaport as a memorial to her son Frederic
Sujit Itty, MD
2013–2014

Dr. Jack Rubin Memorial Fellowship
Established by the family of Dr. Jack Rubin to support postdoctoral fellows
Sanford and Erna Schulhofer Fellowship Fund
Established in 1986 by Mr. Sanford Schulhofer to support postdoctoral research and training in vision science
Ryan Wong, MD
2013–2014

Lee and Mae Sherman Fellowship Fund
Established in 1981 by the Sherman family to support postdoctoral fellows
Daniel Rootman, MD
2013–2014

Audrey and Jack Skirball Ocular Inflammatory Disease Fellowship
Established in 2011 by The Skirball Foundation to support the training of fellows specializing in ocular inflammatory disease
Ryan St. Clair, MD
2013–2014

Jules Stein Research Fellowship
Established in 1982 by various donors to honor the memory of Charles Kenneth Feldman
Ryan Wong, MD
2013–2014

Endowments for Research, Education, and Patient Care

The Annenberg Foundation Fund
J. Richard Armstrong and Ardis Armstrong Fund
Elsie B. Ballantyne Regents Fund
Elsie B. Ballantyne UCLA Foundation Fund
Virginia Burns Oppenheimer Endowment Fund
Card Family Research Fund
Edward and Hannah Carter Fund
Anthony Eannelli Fund
Katherine L. Gardner Research Fund
Emma B. Gillespie Fund
Audrey Hayden-Gradle Trust
Marie and Jerry Hornstein Family Endowed Macular Degeneration Research Fund
Michael Huffington Ophthalmology Scholarship Fund
Stella F. Joseph Fund
JSEI Maintenance Fund
Herman King Fund
The Karl Kirchgessner Foundation Ophthalmology Endowment Fund
Sara Kolb Memorial Fund John and Theiline McCone Macular Disease Research Fund
William, Richard, and Roger Meyer Fund
Chesley Jack Mills Trust
Patricia Pearl Morrison Research Fund
William R. Payden Fund for Glaucoma Research
Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease Endowment Fund
Jerome T. Pearlman, MD, Fund
Emily G. Plumb Estate and Trust

Herb Ritts, Jr., Memorial Vision Fund
Arna Saphier Macular Degeneration Fund
Albert Sarnoff Endowed Cataract Fund
Richard B. Shapiro Vision Fund
The Skirball Foundation Fund
Arthur Spitzer Fund
Dr. William F. Stein and Esther Elizabeth Stein Memorial Fund
Raymond and Ruth Stotter Vision Science Research Fund
Bradley R. Straatsma Research Fund
Barbara P. Taylor Fund
UCLA Center for Eye Epidemiology
Paul J. Vicari Endowed Cataract Research Fund
Uncle Claude Fund
Anne H. West Estate Fund
Daniel B. Whipple Fund
Pat and Joe Yzuriaga Endowed Cataract Fund

A Year in Review | Stein Eye Institute
The legacy of Dr. and Mrs. Jules Stein arises from their role in the 20th century as visionaries. Through brilliance and beneficence, they created a multitude of programs aimed specifically at one goal: preserving and restoring eyesight. They approached this task dauntlessly, integrating the worlds of business, medicine, and philanthropy in such a way as to enhance each and leave in trust the promise of limitless accomplishment in the advancement of eye research and treatment. The Stein Eye Institute was established as a result of their philanthropy.
Jules Stein

Jules Stein is the foremost benefactor in the world history of vision science and blindness prevention. He combined his love for music and medicine with a unique talent for analysis and organization to produce a lifetime of celebrated achievements as musician, physician, business leader, and humanitarian.

Born in South Bend, Indiana, in 1896, Jules Stein received a bachelor of philosophy degree from the University of Chicago at age 18 followed by a medical degree from Rush Medical College. After completing postgraduate studies at the University of Vienna and Chicago’s Cook County Hospital, he began medical practice and was certified by the American Board of Ophthalmology.

A musician from an early age, he financed his education by playing in and leading his own band. As his reputation increased, he began booking other musicians for professional engagements, and in 1924, founded Music Corporation of America (MCA). Shortly thereafter, he gave up the practice of medicine to concentrate on this enterprise. Within 10 years, MCA represented most of the great name bands and corporate activities began to extend to representation of film stars, directors, writers, and musical artists. MCA entered the promising new field of television at its inception, eventually acquiring the Universal City property, Universal Pictures, and other enterprises to become preeminent in the entertainment industry.

Throughout his phenomenally successful career, Jules Stein maintained a strong interest and emotional investment in medicine, particularly his own field of ophthalmology. In the late 1950s, urged by his wife, Doris, he chose to direct his considerable talents to blindness prevention. The result was a concert of ideas and achievements that encompassed philanthropy, government, and academic medicine.

By his efforts, Research to Prevent Blindness was created, now recognized as the world’s leading voluntary organization in support of studies of the eye and its diseases. Jules Stein was largely responsible for the passage of legislation to establish the National Eye Institute as a separate entity in the National Institutes of Health. Under his leadership, the Stein Eye Institute was founded as a multidisciplinary center for vision science. Since its establishment, the Institute has become internationally identified as the focus for coordinated programs of research in the sciences related to vision, ophthalmic education, and the care of patients with eye disease. Jules Stein died in 1981, leaving a legacy of hope to the world. Through his accomplishments and philanthropy, he created ever-replenishing resources for eye research and the means to preserve and restore sight for future generations.

Dorothy Stein

Dorothy Stein’s purposeful, yet richly varied life, earned the respect and affection of the many people who benefited from her humanitarianism. Inspiring partner of her husband for more than half a century, Dorothy Stein shared with him the accomplishments of his philanthropic endeavors and guided his interests in ophthalmology, beginning with a visit to the New York Lighthouse for the Blind in the late 1950s. Deeply moved, Dorothy Stein urged her husband to “do something!” From that passionate beginning came a broad base of programs that catalyzed eye research.

Dorothy Stein was a major force in this vision renaissance. She served as an officer and director of Research to Prevent Blindness, personally leading the appeal to establish more resources for investigations into eye diseases. She suggested that Jules Stein assume the principal role in the creation of an eye institute at UCLA, and her unflagging enthusiasm nurtured the Institute’s development as a unique provider of every facet of vision research and patient care. Serving as Trustee, she focused special attention on Institute initiatives to combat blindness throughout the world. She devoted her last days, until her death in 1984, to the development of an expansion and companion building for eye research. In 1989, dedication ceremonies were held for the Dorothy Stein Eye Research Center.

With grace, vision, and meaningful action, Dorothy Stein enhanced the lives of all privileged to know her, stimulated a cascade of progress in eye research, co-founded the Institute with its boundless scientific potential, and extended the miracle of sight to untold numbers of people.
Board of Trustees

The Stein Eye Institute Board of Trustees was established in 1977 to ensure the Institute’s orderly growth and development. The Board meets regularly during the year, with each Trustee providing his/her unique counsel. Collectively, their invaluable contributions have included fiscal planning for the Institute, adoption of measures to facilitate recruitment of the world’s finest vision scientists, allocation of funds for the purchase of vision research equipment, and recommendations for facilities expansion programs.

Current Members

Bartly J. Mondino, MD
Director
Stein Eye Institute
1994–present

Nelson C. Rising, Esq.
Chairman and
Chief Executive Officer
Rising Realty Partners
2011–present

Ronald L. Olson, Esq.
Partner
Munger, Tolles, and Olson
1995–present

Katrina Vanden Heuvel
Publisher and Editor
The Nation Magazine
1984–present

Gerald H. Oppenheimer
President
Gerald Oppenheimer Family Foundation
President
Systems Design Associates
1992–present

Casey Wasserman
President and
Chief Executive Officer
The Wasserman Foundation
1998–present

Andrea L. Rich, PhD
Retired President, Chief Executive Officer, and Director
Los Angeles County Museum of Art
Executive Vice Chancellor Emerita
UCLA
2007–present*
*Dr. Rich passed away July 28, 2014
Executive Committee

Director, Stein Eye Institute
Chairman, UCLA Department of Ophthalmology
Bartly J. Mondino, MD

Associate Directors, Stein Eye Institute
Wayne L. Hubbell, PhD
Gabriel H. Travis, MD

Vice-Chairs, UCLA Department of Ophthalmology
Sherwin J. Isenberg, MD
Anne L. Coleman, MD, PhD

Chief Administrative Officer, Stein Eye Institute
Jonathan D. Smith
The Stein Eye Institute at UCLA is a vision-science campus dedicated to the preservation and restoration of vision through its global programs and innovative research, quality patient care, and multidisciplinary, integrative education, all with community outreach.
FACULTY
Anthony J. Aldave, MD

Walton Li Chair in Cornea and Uveitis
Professor of Ophthalmology
Chief of the Cornea and Uveitis Division
Member of the Stein Eye Institute

RESEARCH SUMMARY

Discovering the Genetic Basis of the Corneal Dystrophies

The Cornea Genetics Laboratory, under Dr. Aldave’s direction, is involved in identifying and elucidating the genetic basis of inherited corneal disorders, such as posterior polymorphous and Lisch corneal dystrophies.

Honors
Awarded the gold medal for contributions to the field of ophthalmology by the Intraocular Implant and Refractive Society on September 8, 2013, in New Delhi, India.
Delivered the Roger F. Meyer, MD, Lectureship in Cornea on September 19, 2013, at the University of Michigan in Ann Arbor, Michigan.

Public Service
Chair, International Advisory Committee of Tissue Banks International
Chair, American Academy of Ophthalmology Knowledge Base Development Project, Cornea and External Disease Panel
Vice Chair, American Academy of Ophthalmology Ethics Committee
Associate Examiner, American Board of Ophthalmology
Member, Cornea Society Board of Directors
Reviewer for many scientific journals

Research Grants
National Eye Institute: Identification and Characterization of the Genetic Basis of PPCD, 12/1/12–11/30/17
JAEB Center for Health Research: Effect of the Corneal Preservation Time on Long-Term Graft Success (CPTS), 3/6/12–8/31/16
Anthony C. Arnold, MD

Jerome and Joan Snyder Chair in Ophthalmology
Professor of Clinical Ophthalmology
Chief of the Neuro-Ophthalmology Division
Director of the UCLA Optic Neuropathy Center
Member of the Stein Eye Institute

RESEARCH SUMMARY

Ischemic and Inflammatory Diseases of the Optic Nerve

Dr. Arnold directs a neuro-ophthalmology research program concerned with diseases of the optic nerve. The overall goals of the program are the development of new techniques for imaging the optic nerve and its blood supply; an improved understanding and classification of ischemic and inflammatory optic nerve diseases; and the development and evaluation of new therapeutic modalities for these diseases.

Dr. Arnold was a principal investigator in the National Eye Institute-sponsored clinical study of optic nerve sheath decompression surgery for nonarteritic anterior ischemic optic neuropathy, and he was on the study’s Visual Field Data Analysis Committee. He is a primary advisor for an international multi-center study of risk factors for nonarteritic anterior ischemic optic neuropathy.

Ongoing additional research studies include clinical characteristics of ischemic optic neuropathy in young patients; improved differentiation of arteritic from nonarteritic anterior ischemic optic neuropathy; identification of ischemic aspects of other rare optic neuropathies, such as diabetic papillopathy, uremic optic neuropathy, and chemotherapy-induced optic neuropathy after bone marrow transplantation; and classification of unusual optic neuropathies, such as ethambutol-induced optic neuropathy and focal congenital optic nerve hypoplasia. A study of differentiation of optic disc drusen from papilledema has recently been completed. A major thesis entitled, The Spectrum of Optic Disc Ischemia, has been submitted to the American Ophthalmological Society.

Honors
Recipient of the North American Neuro-Ophthalmology Society’s (NANOS) Distinguished Service Award presented on March 5, 2014, at the NANOS Annual Meeting in San Juan, Puerto Rico.

Public Service
Faculty, Stanford/Bay Area Basic Science Course in Neuro-Ophthalmology
Faculty, Lancaster Course in Ophthalmology, Colby College
Board Director, American Board of Ophthalmology
Chair, ACGME Residency Review Committee for Ophthalmology
Chair, ACGME Milestones Committee for Ophthalmology
Reviewer for many scientific journals
Richard S. Baker, MD

Associate Professor of Ophthalmology
Executive Director, Urban Health Institute
Chairman, Department of Ophthalmology
Charles R. Drew University of Medicine and Science
Member of the Stein Eye Institute

RESEARCH SUMMARY

Ophthalmic Epidemiology and Health Services Research

Dr. Baker’s primary areas of research interest are in the fields of ophthalmic epidemiology, health services research, and health information technology including telemedicine. Current projects in ophthalmic epidemiology include statistical analysis of national and statewide databases to produce definitive population-based estimates of the distribution and the determinants of major ophthalmic diseases and their treatments.

As director of the Charles Drew Center for Health Services Research, Dr. Baker works closely with collaborators at the Stein Eye Institute and across UCLA on multiple projects related to improving access to care, optimizing the quality of care, and eliminating health disparities in diverse and underserved populations.

Public Service

Board Member, California Medical Association
Chairman, Council for Scientific and Clinical Affairs, California Medical Association
Chairman, African American Physician Advisory Committee, Los Angeles County Medical Association
Board Member, Latino Physicians of California
Board Member, Hispanic-Serving Health Professions Schools
Co-Founder and Board Member, Los Angeles Eye Institute
Member, South Los Angeles Health Care Leadership Roundtable
Reviewer for multiple NIH and AHRQ Special Emphasis Panels
Reviewer for many scientific journals
Dr. Bhat’s laboratory studies the regulation of gene activity during differentiation and development of the vertebrate eye. This involves isolation and characterization of genes and gene products, identification of the regulatory elements and factors, and elucidation of their mechanisms employing both in vivo and in vitro paradigms with manipulated gene sequences.

Two areas of research currently under investigation are focused on gaining deeper insight into molecular mechanisms that developmentally predispose the eye to visual impairment through ocular lens pathologies such as cataracts, and through retinal diseases including age-related macular degeneration (AMD).

One area of attention is the study of the developmental and tissue-specific control of the heat shock promoter of the αB-crystallin gene and its involvement in cataractogenesis. Another is the elucidation of the physiological function of the αB-crystallin protein in the ocular lens, in the neuroretina and retinal pigment epithelium (RPE), and in the brain. Technically this work involves gene manipulations and the study of their consequences on the phenotype, both in vitro (cultured cells) as well as in vivo (transgenic animals).

Studies on the regulation of the expression of the small heat shock protein gene, αB-crystallin are focused on heat-shock transcription factor 4 (HSF4), which Dr. Bhat’s laboratory has reported to be the predominant heat shock transcription factor of the developing ocular lens and whose post-natal expression correlates with the most prevalent form of early childhood lamellar cataracts. Dr. Bhat’s laboratory has generated mouse models of this cataract, thus enabling first-time investigation of this childhood pathology.

Studies on the function of the αB-crystallin protein in the lens and the RPE (in particular its relation to AMD) are focused on elucidating its “non-crystallin” function, which is relevant both in the transparent and nontransparent physiology. These investigations in Dr. Bhat’s laboratory have led to the discovery of the secretion of αB-crystallin from the RPE in lipoprotein vesicles known as exosomes, and initiated studies on elucidation of intercellular communication (via exosomes) in the RPE, in health, and in disease.
Dr. Caprioli’s long-term objective in his clinical and basic research is to identify those individuals at greatest risk for visual loss and to implement new treatment strategies to prevent blindness. Currently, the only tool that physicians have to treat glaucoma is reduction of intraocular pressure. This treatment does not prevent visual loss in a substantial proportion of patients whose damage progresses quickly. The development of effective neuroprotective avenues of treatment will be a hallmark advance to eliminate blindness from this disease.

Evaluation of Methods to Measure Rates of Glaucomatous Optic Nerve Damage

Accurate assessment of optic nerve and nerve fiber layer is important to the early detection and timely treatment of glaucoma. Studies are underway to develop novel structural measures of the optic nerve and nerve fiber layer, which are sensitive and specific for early and progressive glaucomatous optic nerve damage. The goals of this work include identifying clinically implementable techniques to measure the rate of progressive damage. It is unlikely that a single structural or functional technique will be best throughout the course of the disease, and different methods will need to be applied at different stages to best measure disease progression.

Molecular Mechanisms of Retinal Ganglion Cell Damage and Neuroprotective Approaches to Treatment

Basic science research under Dr. Caprioli’s direction involves the mechanisms of glaucomatous optic nerve damage. The stress protein response in a glaucoma model is being intensively studied. An important goal in this research is to identify neuroprotective drugs that prevent the death of retinal ganglion cells in mammalian models of glaucoma, and to apply these findings to clinical trials of human glaucoma.
Richard Casey, MD

Health Sciences Clinical Professor of Ophthalmology
Associate Member of the Stein Eye Institute

RESEARCH SUMMARY

Cornea External Disease

Dr. Casey’s research is focused on understanding the causes of corneal disease and developing or improving treatments for patients with these disorders. He is collaborating with the Glaucoma and Ophthalmic Pathology Divisions on clinical research projects to understand the nature of comorbid conditions, such as glaucoma and dry eye disease. For dry eye disease, Dr. Casey is engaged in research to evaluate the ocular surface of patients undergoing corneal transplantation surgery to establish previously undescribed clinical-pathologic correlation with tear insufficiency and corneal epithelial abnormalities. The goal of these investigations is to improve the success of corneal transplantation in high-risk patients with the comorbid conditions of glaucoma, and separately, tear insufficiency.

Public Health Services/ Health Access

Dr. Casey has elected to dedicate a significant portion of his professional career to improving access to health care in specific underserved communities of Los Angeles. He has focused on assessing unmet needs in vision health and developing innovative strategies to meet these deficits. He has established the Los Angeles Ophthalmology Medical Group, a comprehensive eye care service entity, which is currently engaged in a partnership to provide eye care services to facilities of the Los Angeles County, Department of Health Services in South Los Angeles.
Anne L. Coleman, MD, PhD

The Fran and Ray Stark Foundation Chair in Ophthalmology
Professor of Ophthalmology
Professor of Epidemiology
Director of the Stein Eye Institute Centers for Community Outreach and Policy, Eye Epidemiology, and the UCLA Mobile Eye Clinic
Vice Chair of Academic Affairs, Department of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Glaucoma, Cataract, and Age-Related Macular Degeneration

Dr. Coleman’s research is directed toward the diagnosis, treatment, and societal impact of glaucoma, cataracts, and age-related macular degeneration, including the study of lifestyle limitations imposed on patients with these kinds of eye diseases. Clinical projects include studies that analyze the genetic markers in the trabecular meshwork of patients undergoing glaucoma surgery, the prevention of visual impairment and blindness in school-age children, comparative effectiveness research, and glaucomatous visual field and optic nerve progression.
Joseph L. Demer, MD, PhD

Leonard Apt Endowed Chair in Pediatric Ophthalmology
Professor of Ophthalmology
Professor of Neurology
Chief of the Pediatric Ophthalmology and Strabismus Division
Member of the Stein Eye Institute

RESEARCH SUMMARY

Motility and Vision

Dr. Demer studies the role of the brain and extraocular muscles in the control of eye movements and visual perception. He is directing a National Eye Institute research project aimed at developing an understanding of the role of orbital connective tissues and nerves in the development of binocular coordination disorders, such as strabismus, and is developing new technologies for magnetic resonance imaging of extraocular muscles and nerves. This research has contributed to the knowledge of the functional anatomy of extraocular muscles and connective tissues, allowing development of new types of surgeries.

Dr. Demer’s research also employs novel micro- and nano-technological techniques to study the biomechanical properties of the extraocular muscles and associated tissues, as well as optical and x-ray imaging of the effects of physiological forces in the tissues.

Honors

Public Service
Editorial Board Member, Investigative Ophthalmology and Visual Science
Editorial Board Member, Journal of the American Association for Pediatric Ophthalmology and Strabismus
Associate Editor, Strabismus
Grant Reviewer, United States Public Health Service
Scientific Advisory Committee Member, Knights Templar Eye Foundation
Council Member, International Strabismological Association
Reviewer for many scientific journals

Research Grants
National Eye Institute: Biomechanical Analysis in Strabismus Surgery, 5/1/11–4/30/16
Knights Templar Eye Foundation Inc.: Gesite-de Leon, Bhambi Uellyn: Training Mentors in Developing Countries (TMDC) Pediatric Ophthalmology Fellowship, 7/1/13–6/30/14
Stein Eye Institute | Faculty

Sophie X. Deng, MD, PhD

Associate Professor of Ophthalmology
Member of the UCLA Jonsson Comprehensive Cancer Center
Member of the UCLA Broad Stem Cell Research Center
Member of the Stein Eye Institute

RESEARCH SUMMARY

Limbal Stem Cell Deficiency

Dr. Deng’s research is focused on improving the current diagnosis and treatments for patients with limbal stem cell deficiency. One of the ongoing clinical studies that Dr. Deng conducts shows correlated cellular changes in the cornea and limbus, using laser scanning *in vivo* confocal microscopy in patients with limbal stem cell deficiency. Damages to the limbal stem cells could be detected using this new technology and correlated with clinical presentation. This new technique could allow for a better understanding of the pathophysiology of limbal stem cell deficiency. Another study focuses on finding a better diagnostic marker for limbal stem cell deficiency. By using the new diagnostic marker and the *in vivo* confocal image study, a timely diagnosis and staging of disease progression could be achieved.

Dr. Deng’s laboratory studies the microenvironment/niche of the limbal stem cells to elucidate those factors that govern the fate of limbal stem cells. The role of the Wnt signal transduction pathway in human limbal stem/progenitor cells is under investigation. Recent study in her laboratory reveals that activation of the Wnt/β-catenin promotes self-renewal of limbal stem cells and that Frizzled 7 might be the receptor that mediates the Wnt activation. Use of small molecules to modulate Wnt signaling is being investigated to increase the efficiency of *ex vivo* expansion of limbal stem cells for transplantation.

The second project in Dr. Deng’s laboratory is to achieve patient-specific therapy by regenerating autologous limbal stem cells in a xenobiotic-free culturing system for transplantation. Her laboratory has developed xenobiotic-free and feeder-free culture methods to expand autologous limbal stem cells in culture. Preclinical studies are ongoing to bring this stem cell therapy to restore vision in patients who suffer from limbal stem cell deficiency.

Public Service
Member, American Academy of Ophthalmology Ophthalmic Technology Assessment Committee, Cornea and Anterior Segment Disorders Panel

Research Grants
National Eye Institute: Ex Vivo Expansion of Human Limbal Stem Cells for Transplantation, 9/1/12–8/31/17
Dr. Fain’s primary research interest is in the physiology of photoreceptors in the vertebrate eye. A vertebrate photoreceptor uses a photopigment called rhodopsin and a G-protein cascade to produce the electrical response that signals a change in light intensity. Powerful new techniques have made it possible to understand the working of this cascade in extraordinary detail. Practically all the protein molecules involved in the cascade in a photoreceptor—from the pigment molecule to the G-protein and channels, but also including a large number of control proteins—are expressed only in the photoreceptors and nowhere else in the body. This has enabled scientists to use genetic techniques to create mice in which these proteins have been knocked out, over- or under-expressed, or replaced with proteins of modified structure.

Dr. Fain’s laboratory uses electrical recording to study the effects of such genetic alterations on the light responses of mouse rods, in order to understand the role of these proteins in the visual cascade. His research team is especially interested in modulatory enzymes and their function in light and dark adaptation. Dr. Fain also has a long-standing interest in mechanisms of photoreceptor degeneration in genetically inherited disease. His laboratory is presently the only laboratory measuring changes in calcium from mouse rods with fluorescent dyes. Findings have implicated both increases and decreases in calcium concentration as contributing factors in the triggering of apoptosis. Such information may provide insight into the mechanisms of retinal degeneration.
Debora B. Farber, PhD, DPhhc

Karl Kirchgessner Foundation Chair in Vision Science
Distinguished Professor of Ophthalmology
Member of the Brain Research Institute
Member of the Molecular Biology Institute
Member of the Stein Eye Institute

RESEARCH SUMMARY

Retinal Biochemistry, Molecular Biology, and Genetics of Retinal Degenerations

Dr. Farber’s research focuses on the isolation and characterization of genes involved in inherited retinal diseases. Her team has cloned several genes encoding enzymes and proteins that play a key role in vision, including the α-PDE gene, that leads to blindness in mice and dogs, and causes one type of autosomal recessive retinitis pigmentosa (arRP) (utilizing gene therapy methods, they rescued mice photoreceptors by delivering the normal gene to these cells); RP1 (responsible for a type of autosomal dominant RP); the gene causing disease in the rd7 mouse—a model for Enhanced S-Cone Syndrome; the α-transducin gene, disrupted in the Rd4 mouse, another model of retinal disease; and the mouse homologue of the gene causing X-linked juvenile retinoschisis (Xlr5). Dr. Farber’s group is also working on the mechanisms that regulate transcription and expression of retinal genes. They found that the transcription factor SP4 controls the activity of the α-PDE promoter and that mutations in both SP4 and α-transducin cause digenic arRP and cone-rod dystrophy (arCRD). Other projects include the identification of cone genes (mutations in 7R and ZBED4 cause arRP and arCRD); the characterization of animal models of ocular albinism, which are affected with permanent visual impairment; and the study of microvesicles released by mouse embryonic stem cells that transfer RNA or protein to other cells, in vitro.
JoAnn A. Giaconi, MD

Health Sciences Associate Professor of Ophthalmology
Chief of the Ophthalmology Section at the Greater Los Angeles VA Healthcare System
Co-Director of Medical Student Education at the David Geffen School of Medicine, UCLA
Member of the Stein Eye Institute

RESEARCH SUMMARY

Glaucoma

Dr. Giaconi’s research focuses on the treatment of glaucoma and the effects of glaucoma surgery on the cornea and vision. She is currently working on a project examining the overtreatment or undertreatment of glaucoma in the veteran population. She is also enrolling patients in two clinical studies at the Stein Eye Institute. One study is examining the effect of various glaucoma surgeries on the corneal endothelium, which is the layer of cells that keeps the cornea clear, and the other is investigating the post-operative eye pressure course following Ahmed valve implant surgery.
Ben J. Glasgow, MD

Edith and Lew Wasserman Professor of Ophthalmology
Professor of Pathology and Laboratory Medicine
Chief of the Ophthalmic Pathology Division
Member of the Stein Eye Institute

RESEARCH SUMMARY

Ophthalmic Pathology

Dr. Glasgow’s research interests are primarily in the field of ophthalmic pathology. His major focus is the role of human lacrimal gland proteins in the protection and maintenance of the eye. His laboratory is investigating the structure-function relationship of tear lipocalin, the principal lipid carrier protein of tears. Currently, the laboratory has developed a technique called site-directed tryptophan fluorescence to probe and report information regarding molecular motion and solution structure. By studying the molecular mechanisms of tear proteins, Dr. Glasgow is seeking to learn the normal functions of tear lipocalin and its role in maintaining the health of the ocular surface and in the prevention of dry eye diseases. It is hoped that this research will lead to new treatments for dry eye and have broad application to numerous other members of this protein family that transport small, insoluble molecules through the body.
Robert Alan Goldberg, MD

Karen and Frank Dabby Endowed Chair in Ophthalmology
Professor of Ophthalmology
Chief of the Orbital and Ophthalmic Plastic Surgery Division
Director of the UCLA Orbital Disease Center
Co-Director of the UCLA Aesthetic Center
Member of the Stein Eye Institute

RESEARCH SUMMARY

Diseases and Therapy of the Eyelid and Orbit

Research into the various surgical approaches to Graves orbitopathy (thyroid eye disease) has resulted in new techniques that include less invasive small incision surgical approaches. In addition, detailed clinical information gathered from patients with Graves orbitopathy is being recorded in a shared database as a way to understand the natural history and response to treatment of this multifaceted disease, which is a cause of significant visual loss and discomfort. Multicenter studies are underway. Dr. Goldberg is also investigating the underlying causes of thyroid-related orbitopathy. The goal of this research is to develop better tests to monitor disease activity, as well as new treatments to address the basic cause of the disease.

Research into orbital and eyelid anatomy, currently in progress, is resulting in improved techniques and approaches to deep orbital disease. Included is the use of high-resolution magnetic resonance imaging and high-resolution dynamic ultrasonography to evaluate motility problems following trauma and orbital surgery, and three-dimensional analysis of orbital anatomy. Improved understanding of eyelid and orbital anatomy is the basis for developing improved surgical techniques. Instrumentation and devices that allow less invasive surgical approaches, such as hyaluronic acid gels, are being developed and studied. In collaboration with the Department of Engineering, custom materials for orbital reconstruction are investigated.

Outcomes of medical and surgical treatment of orbital and eyelid disorders are being studied in an organized, prospective fashion in order to better understand which treatments are most effective.
Dr. Gordon’s laboratory is involved in two primary areas of research. One project investigates the role for epithelial membrane protein 2 (EMP2) in controlling ocular pathologic responses. Dr. Gordon and her colleagues identified that EMP2 plays an important role in an in vitro model of proliferative vitreoretinopathy (PVR) and have evidence that EMP2 is highly expressed in human retinal diseases. In addition, they recently identified that EMP2 controls VEGF production in epithelial cells and in specific tumors. The laboratory, in collaboration with others at UCLA, has recently developed a designer antibody fragment that has demonstrated efficacy in in-vitro studies in the PVR model and in other animal models in vivo. This antibody has now been successfully used to control pathologic neovascularization in a corneal burn model, achieving proof of principal for using this antibody to control disease.

The second area of interest of Dr. Gordon’s group is the developmental role of programmed death 1 (PD-1), a molecule that is known to play an important role in immune regulation in retinal formation. PD-1 has a major function as a negative regulator in the immune system. Although previous studies identified PD-1 expression in the lymphoid system, Dr. Gordon and her colleagues have recently identified its expression in neuronal cells of the retina. This observation raises the possibility of a developmental role for PD-1 in maturation of the ganglion cell layer and retinal remodeling process as well as a possible role for PD-1 in degenerative neuronal diseases. By understanding the role of PD-1 in the retina, we may understand how to improve the visual outcome for patients with optic nerve diseases.
Michael B. Gorin, MD, PhD

Harold and Pauline Price Chair in Ophthalmology
Professor of Ophthalmology
Professor of Human Genetics
Chief of the Division of Retinal Disorders and Ophthalmic Genetics
Member of the Stein Eye Institute

RESEARCH SUMMARY

Hereditary Eye Disorders and Molecular Genetics of Age-Related Maculopathy

Dr. Gorin’s primary research focus is molecular genetics of hereditable eye disorders, specifically age-related macular degeneration (AMD). His research group was the first to identify specific regions of the genome that contributed to ARM development in families, leading to discovery of gene variations that contribute to the risk of developing ARM. He continues to work on studies of the genetics of AMD, in particular the use of genetic risk profiles to test for clinical markers, including sensitive methods for detecting changes in retinal structure and function that precede the onset of clinical disease.

Dr. Gorin investigates the molecular genetics of complex disorders such as cystoid macular edema, age-related cataracts, and glaucoma, as well as monogenic disorders such as hereditary retinal degenerations, glaucoma, cataracts, and ocular syndromes. He is pursuing studies to identify genetic variations that contribute to the severity, complications, and therapeutic responses of these conditions. Dr. Gorin and his clinical team work with the clinical and research human genetics group at UCLA to explore use of new technologies, including next-generation sequencing for clinical utility in ophthalmic genetics.

Research also focuses on the neurobiology of ocular pain and photophobia (sensitivity to light) to understand the basic biology and neural pathways that contribute to photophobia so that new therapeutic strategies can be developed. Based upon preliminary work, opportunities have emerged to investigate the pathogenesis of light sensitivity for individuals who suffer from migraines and/or mild traumatic brain injury.

Clinical research efforts are directed towards developing methods to monitor and quantify retinal function in progressive retinal disorders (such as diabetic retinopathy, Stargardt disease, and retinitis pigmentosa) and in patients with potential ocular toxicities from systemic medications. Applied research interests include bioinformatics in clinical ophthalmic practice and public health issues pertaining to ocular disease.

Public Service
Medical Director, Stein Eye Institute’s Electronic Medical Record System
Member, Medical Education Committee, David Geffen School of Medicine at UCLA
Editorial Board Member, Current Eye Research and Experimental Eye Research
Advisory Board Member, American Health Assistance Foundation
Member, Association of University Professors of Ophthalmology, Consortium of Medical Education Directors
Member, Special National Institutes of Health Study Sections for the National Eye Institute, National Institute on Aging (Claude Pepper Grants), National Human Genome Research, Center for Inherited Disease Research
Scientific Advisory Committee Member, the American Health Assistance Foundation and the Knights Templar Eye Research Foundation
Founding Member of the von Hippel-Lindau Center of Excellence at UCLA Medical Center
Member of the Clinical Research Governance Committee for UCLA
Reviewer for many scientific journals

Research Grants
National Eye Institute: Genetics of Age-Related Maculopathy, 4/1/07–3/31/14
Neuro Kinetics, Inc.: Phase 2-Developing a Noninvasive Method and Device for Assessing the Degree of Midperipheral Retinal Ischemia in Diabetic Retinopathy, 2/1/11–1/31/14
David Rex Hamilton, MD, FACS

Health Sciences Associate Professor of Ophthalmology
Director of the UCLA Laser Refractive Center
Member of the Stein Eye Institute

RESEARCH SUMMARY

Advanced Intraocular Lenses

Dr. Hamilton’s research interests are in the areas of corneal biomechanics and tomography (3D imaging of the cornea), screening for corneal ectatic disorders, and the clinical study of intraocular lenses (IOLs) for the treatment of high myopia (phakic IOLs), astigmatism (toric IOLs), and presbyopia (multifocal and accommodating IOLs). Dr. Hamilton is actively involved in training residents and fellows in the surgical treatment of refractive errors and cataracts.
Gary N. Holland, MD

Jack H. Skirball Chair in Ocular Inflammatory Diseases
Professor of Ophthalmology
Director of the Ocular Inflammatory Disease Center
Director of the UCLA Department of Ophthalmology Clinical Research Center
Co-Director of Medical Student Education at the David Geffen School of Medicine, UCLA
Member of the Stein Eye Institute

RESEARCH SUMMARY

Uveitis and Cornea-External Ocular Diseases

Dr. Holland’s research interests involve infectious and inflammatory diseases of the eye. A major focus of current research is ocular toxoplasmosis, the most common retinal infection in the general population. Dr. Holland is conducting various epidemiological and laboratory investigations in collaboration with investigators at the National Institutes of Health, the U.S. Centers for Disease Control and Prevention, and other universities in the United States, Brazil, and Europe, to understand the sources of infection, course of disease, response to treatment, and disease outcomes. Patient genetic and parasite-related factors that influence the risk of ocular involvement are being studied.

Since 1981, Dr. Holland has been involved in the study of HIV-related eye disease. He has participated in a large, NIH-supported multicenter study to investigate how the ocular manifestations of HIV disease have changed since the introduction of potent antiretroviral drugs. In particular, he is using data generated in the study to investigate HIV-related “neuroretinal disorder” (NRD), a degenerative condition of the retina that appears to be the cause of subtle changes in vision that are known to occur in HIV-infected individuals, even among those whose immune function has improved because of antiretroviral drugs. In addition, he is investigating abnormalities of retinal blood vessels and abnormal blood flow as possible contributing factors for development of NRD. Studies performed by Dr. Holland have shown that these vascular changes are markers of non-ocular, sometimes life-threatening, diseases among people with AIDS.

In conjunction with members of the Department of Pediatrics-Rheumatology Division, Dr. Holland has established a program to provide care for children with chronic anterior uveitis, a common feature of juvenile idiopathic arthritis (JIA). He is investigating risk factors for development of vision-threatening complications of JIA-associated uveitis and studying the most effective techniques for evaluation and treatment of affected children.

Dr. Holland is also investigating birdshot chorioretinopathy, a chronic autoimmune disease of the eye, in conjunction with Drs. Ralph D. Levinson, Steven Nusinowitz, and researchers from Service d’Ophtalmologie, Hôpital Cochin, Université Paris, France.
Joseph Horwitz, PhD
Oppenheimer Brothers Chair
Distinguished Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Biochemistry and Biophysics of the Crystalline Lens

Dr. Horwitz is conducting research on the biochemical and biophysical properties of normal and cataractous lens proteins. In addition, he is investigating the molecular chaperone properties of the lens’ alpha-crystallin, a protein that plays an important role in keeping the eye lens clear during normal aging. Alpha-crystallin is also involved in age-related macular degeneration, as well as in many other neurodegenerative diseases. New spectroscopical techniques are currently being developed for studying protein function and structure utilizing extremely high hydrostatic pressure.

Research Grants
National Eye Institute: Analysis of Lens Crystallins and Cataractous Mutants at High Hydrostatic Pressure, 4/1/14–3/31/19
Wayne L. Hubbell, PhD

Jules Stein Chair in Ophthalmology
Distinguished Professor of Ophthalmology
Distinguished Professor of Chemistry and Biochemistry
Co-Chief of the Vision Science Division
Associate Director of the Stein Eye Institute

Research Summary

Molecular Basis of Phototransduction in the Vertebrate Retina

Dr. Hubbell’s research is focused on understanding the complex relationship between molecular structure, plasticity, and conformational changes that control protein function in the visual system. Of particular interest are proteins that behave as “molecular switches,” that is, proteins whose structures are switched to an active state by a physical or chemical signal. Examples include rhodopsin, the membrane-bound photoreceptor protein of the retina, and transducin and arrestin, proteins that associate with rhodopsin during function. The overall goal is to determine the structure of these proteins in their native environment, monitor the changes in structure that accompany the transition to an active state, and to understand the role of protein flexibility in function.

To investigate these and other proteins, Dr. Hubbell’s laboratory has developed the technique of site-directed spin labeling, a novel and powerful approach to the exploration of protein structure and dynamics. By changing the genetic code, a specific attachment point in the protein is created for a nitroxide spin label probe. Analysis of the electron paramagnetic resonance (EPR) spectrum of the spin label provides information about the local environment in the protein. With a sufficiently large set of labeled proteins, global information on structure is obtained and changes in the structure during function can be followed in real time. While determination of static protein structure is important to understanding function, current research has highlighted a crucial role for protein flexibility (dynamics), which has not been previously appreciated. To explore molecular flexibility in proteins of the visual system, Dr. Hubbell’s group is developing novel methods using time-domain and high-pressure EPR.

Honors

In recognition of influential and distinguished contributions to the practice of electron paramagnetic resonance (EPR)/electron spin resonance (ESR) spectroscopy, and its welfare over a long period, selected as a 2014 Fellow of the International EPR (ESR) Society.

Public Service

Member, National Academy of Sciences
Member, American Academy of Arts and Sciences

Research Grants

National Eye Institute: Molecular Basis of Membrane Excitation, 5/1/10–4/30/15
National Eye Institute: Core Grant for Vision Research at the Stein Eye Institute, 3/1/10–2/28/15
University of San Diego: Molecular Basis of Selective P450 3A Function, 3/1/11–2/28/14
Jean-Pierre Hubschman, MD
Assistant Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Advanced Vitreoretinal Surgical Interventions and Robotics

Dr. Hubschman’s clinical research focuses on the development and evaluation of new vitreoretinal surgical techniques and robotics for ophthalmic surgery. Automated surgery utilizing robotics promises to increase surgical precision and accuracy, and improve access to medical care. His publications include research papers as well as a book chapter about the feasibility of robotic surgery in ophthalmology. Currently, he is also investigating the use of the terahertz laser for the evaluation of ocular tissue hydration.
Sherwin J. Isenberg, MD

Laraine and David Gerber Chair in Ophthalmology
Professor of Ophthalmology
Professor of Pediatrics
Vice-Chairman of the UCLA Department of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Pediatric Ophthalmology, Amblyopia, and Ophthalmic Pharmacology

Dr. Isenberg’s research activities have concentrated on various aspects of surgical and medical diseases of children’s eyes. The goal is to decrease the frequency of blindness in children worldwide. In a series of studies of newborns, Dr. Isenberg has characterized a number of elements, including: the type and source of bacteria of the external eye at birth; the evolution of iris structural changes; the development of the macula, which is the source of central vision; and pupillary responses after birth. Recent publications have characterized the production and nature of tears of infants and the development of the cornea in the first year of life. He has also reported the ocular signs in newborns whose mothers abuse cocaine, facilitating the diagnosis of newborn cocaine intoxication.

In another avenue of research, povidone-iodine eyedrops have been found to treat bacterial conjunctivitis successfully in a three-year, international study with the University of the Philippines. The eyedrops were also found to be safer and more effective in preventing eye infections than the currently used agents. Dr. Isenberg and other investigators have now proven that the povidone-iodine eyedrops can treat the number one cause of preventable pediatric blindness in the world—corneal infections due to bacteria. These studies, conducted in children and adults in India and the Philippines, should reduce the number of 400,000 children now blind from corneal infections. A new study investigating fungal infections of the eye, which blind approximately 10,000 children annually, has been completed at three sites in India.

Lastly, a new device that reports blood gases from the conjunctiva, such as oxygen and carbon dioxide, is being developed. Preliminary trials have been completed in animals and in adults undergoing cardiac bypass surgery. The hope is to apply the device to the eyes of premature newborns. The continuous readout of tissue blood gas levels should enable the pediatrician to prevent damage to the baby’s brain and keep the oxygen at an appropriate level, minimizing the possibility of blindness from retinopathy of prematurity.

Honors
Delivered the Presidential Lecture, Combating Pediatric Blindness in the 21st Century, at the All India Ophthalmological Conference on February 6, 2014, in Agra, India.

Public Service
President, American Association for Pediatric Ophthalmology and Strabismus
Member, Medical Advisory Board and Board of Directors; and Research Committee Chair, Blind Children’s Center
Past President, Costenbader Pediatric Ophthalmology Society
Co-Founder and Delegate, International Pediatric Ophthalmology and Strabismus Council

RESEARCH SUMMARY

Pediatric Ophthalmology, Amblyopia, and Ophthalmic Pharmacology

Dr. Isenberg’s research activities have concentrated on various aspects of surgical and medical diseases of children’s eyes. The goal is to decrease the frequency of blindness in children worldwide. In a series of studies of newborns, Dr. Isenberg has characterized a number of elements, including: the type and source of bacteria of the external eye at birth; the evolution of iris structural changes; the development of the macula, which is the source of central vision; and pupillary responses after birth. Recent publications have characterized the production and nature of tears of infants and the development of the cornea in the first year of life. He has also reported the ocular signs in newborns whose mothers abuse cocaine, facilitating the diagnosis of newborn cocaine intoxication.

In another avenue of research, povidone-iodine eyedrops have been found to treat bacterial conjunctivitis successfully in a three-year, international study with the University of the Philippines. The eyedrops were also found to be safer and more effective in preventing eye infections than the currently used agents. Dr. Isenberg and other investigators have now proven that the povidone-iodine eyedrops can treat the number one cause of preventable pediatric blindness in the world—corneal infections due to bacteria. These studies, conducted in children and adults in India and the Philippines, should reduce the number of 400,000 children now blind from corneal infections. A new study investigating fungal infections of the eye, which blind approximately 10,000 children annually, has been completed at three sites in India.

Lastly, a new device that reports blood gases from the conjunctiva, such as oxygen and carbon dioxide, is being developed. Preliminary trials have been completed in animals and in adults undergoing cardiac bypass surgery. The hope is to apply the device to the eyes of premature newborns. The continuous readout of tissue blood gas levels should enable the pediatrician to prevent damage to the baby’s brain and keep the oxygen at an appropriate level, minimizing the possibility of blindness from retinopathy of prematurity.
Dr. Law’s principal research interest focuses on the structural appearance of the optic disc in different ocular diseases, including patients with high myopia. Assessment of optic disc size is an important component of the diagnostic evaluation for glaucoma. Patients with high myopia are at greater risk of developing glaucoma, and they also have an atypical optic disc that makes diagnosis difficult. The purpose of Dr. Law’s research is to characterize the appearance of the optic disc in eyes with high myopia and to identify the related risk factors for development of glaucoma.

Glaucoma Tube Shunt Procedure

To prevent intraocular pressure spikes after an Ahmed valve or tube shunt procedure for glaucoma, Dr. Law is evaluating the effect of using antiglaucoma medications at different times following surgery. Patients are randomized to receive antiglaucoma medications either at an early phase or at the standard time following the surgical procedure.

Acupuncture and Glaucoma

Dr. Law is conducting a prospective study to evaluate the effect of acupuncture in glaucoma. Acupuncture is a popular alternative medicine based on traditional Eastern medical theory. Its effect on glaucoma has not been objectively and scientifically studied.
Ralph D. Levinson, MD

Health Sciences Clinical Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Ocular Inflammatory Diseases

Dr. Levinson’s research interest is ocular inflammatory diseases. He is the primary investigator on international research projects in both the clinical aspects of uveitis and the basic mechanisms and immunogenetics of ocular inflammation. Current projects include a collaborative longitudinal study of a chronic inflammatory disease, birdshot chorioretinopathy, with investigators in France. The study focuses on the interrelationship of disease factors, as well as the course of disease and response to treatment.

Dr. Levinson is also conducting laboratory research on cell-based therapies for uveitis.

Public Service
Member, COMPASS, ONE, BCSC Committees, American Academy of Ophthalmology
Member, Knowledge-Based Uveitis Panel, American Academy of Ophthalmology Practicing Ophthalmologists Curriculum
Reviewing Editor, Ocular Immunology and Inflammation
Institutional Review Board Member, UCLA
Reviewer for many scientific journals

Research Grants
MacDonald Family Foundation: Immunologic and Clinical Studies of Eye Disease at the Stein Eye Institute, 12/1/08–12/1/14
Colin A. McCannel, MD

Professor of Clinical Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY
Vitreoretinal Surgery

Dr. McCannel has a longstanding interest in the management of vitreoretinal conditions, particularly complex retinal detachments, complications of diabetic retinopathy, macular holes and epimacular membranes, and age-related macular degeneration. His clinical research efforts are directed at the improvement of vitreoretinal surgical techniques and outcomes, including the prevention of endophthalmitis following intravitreal injections.

Dr. McCannel devotes time to educational research as well. Currently, he is investigating the utility of virtual reality surgery simulation in teaching ophthalmic surgery. He has several ongoing protocols that assess ophthalmic surgical simulation in surgical teaching.

Public Service
Moderator, “Retina Talk” online discussion forum, American Association of Retina Specialists
Judge, American Society of Retina Specialists 14th Annual Film Festival
Chair, Editorial Committee, Retina and Vitreous Basic and Clinical Science Course, Section 12, American Academy of Ophthalmology
Medical Information Technology Committee Member, American Academy of Ophthalmology
Instruction course grader for the 2013 Annual Meeting, Annual Meeting Program Committee, American Academy of Ophthalmology
Abstract grader for the 2013 Annual Meeting, Annual Meeting Program Committee, American Academy of Ophthalmology
Reviewer for many scientific journals
Tara A. McCannel, MD, PhD

Health Sciences Associate Professor of Ophthalmology
Director of the Ophthalmic Oncology Center
Member of the Stein Eye Institute

RESEARCH SUMMARY

Metastatic Ocular Melanoma

Dr. McCannel’s primary research interest is metastatic ocular melanoma. Under her direction, the Ophthalmic Oncology Laboratory is studying molecular markers in ocular melanoma to provide prognostic information to patients and advance understanding of metastatic disease. Discovery of candidate genes from tissue of patients undergoing surgical treatment for ocular melanoma is being explored. This information will be important to establish a better understanding of the biology of metastatic ocular melanoma and help develop better treatments for this cancer. New modalities are being investigated to predict, detect, and ultimately treat choroidal melanoma metastasis.

Surgical Approaches to Vitreoretinal Disease and Cancer

Dr. McCannel is both a vitreoretinal surgeon and an ophthalmic oncologist. She manages the spectrum of vitreoretinal disease in addition to the surgical management of ocular melanoma, allowing patients to benefit maximally from her wide range of surgical prognostic and therapeutic expertise.

Vitrectomy with silicone oil placement is a novel therapeutic strategy, which was discovered at UCLA to reduce radiation exposure to the healthy structures of the eye during plaque surgery for melanoma treatment. Dr. McCannel offers this potentially sight-saving technique to patients who need radiation treatment.

Health Psychology and Ocular Melanoma

Central to incorporating an integrative approach to health care, the concerns and wishes of the patient as a whole are important aspects of cancer management. In collaboration with the UCLA Department of Health Psychology and the Jonsson Comprehensive Cancer Center, Dr. McCannel works closely with health psychologists who are interested in providing clinical care while researching factors, which predict psychological adjustment to cancer.
Kevin M. Miller, MD
Kolokotrones Chair in Ophthalmology
Professor of Clinical Ophthalmology
Chief of the Comprehensive Ophthalmology Division
Member of the Stein Eye Institute

RESEARCH SUMMARY

Cataract and Refractive Surgery

Dr. Miller’s research interests are in cataract and refractive surgery, intraocular lenses, artificial iris implants, ophthalmic optics, surgical devices, and surgical outcomes.

Dr. Miller’s clinical practice focuses primarily on refractive cataract surgery and the surgical correction of presbyopia and astigmatism with premium technology intraocular lenses. He developed an astigmatism management service for treating corneal astigmatism at the time of cataract surgery that optimizes postoperative uncorrected visual acuity. He developed a nomogram for peripheral corneal relaxing incisions and participated in the clinical trial of the world’s most popular toric intraocular lens. He described a nonparametric multivariate technique for comparing astigmatism outcomes between treatment groups. In addition to refractive cataract surgery, he also performs DSEK, LASIK, and other cornea-based laser refractive procedures.

Dr. Miller runs several clinical trials of artificial iris implants to treat congenital and acquired aniridia. He completed the multicenter Ophtec 311 clinical trial. He has an individual device exemption from the FDA to study Morcher GmbH artificial iris implants. He is the only surgeon in the United States who is permitted by the FDA to implant Morcher devices at this time. He is also studying a custom artificial iris implant from Dr. Schmidt Intraocularlinsen, a subsidiary of HumanOptics AG. All of these devices are showing promising results in patients who suffer from congenital and acquired iris defects.

He is also an investigator in the Calhoun Vision light adjustable lens study and the Alcon high-power toric lens post-market approval study.

Public Service
Course Director, Southern California Basic and Advanced Cataract Surgery Courses for Residents and Fellows
American Academy of Ophthalmology, Skills Transfer Course Advisory Committee
American Academy of Ophthalmology, Annual Meeting Program Committee, Cataract Subcommittee
American Society of Cataract and Refractive Surgery, Retina Clinical Committee
World Congress of Ophthalmology 2014 Biannual Meeting Program Planning Committee, Cataract Section
American Society of Cataract and Refractive Surgery Skills Transfer Subcommittee
Faculty of 1000, Post-Publication Peer Review, Lens Disorders Section
International Editorial Board, Oftalmologia Em Foco
Column Editor, American Society of Cataract and Refractive Surgery, EyeWorld Magazine
Editorial Board, Cataract and Refractive Surgery Today
Editorial Board, American Academy of Ophthalmology, EyeNet Magazine
Reviewer for many scientific journals

Research Grants
Alcon Laboratories, Inc.: Post Approval Study of the Acrysof IQ Toric High Cylinder Power Intraocular Lens (IOL), 4/17/12–1/21/15
Calhoun Vision, Inc.: A Prospective Randomized Controlled Multicenter Clinical Study to Evaluate the Safety and Effectiveness of the Light Adjustable Lens, 7/26/12–12/10/14
Clinical Research Consultants, Inc.: Safety and Effectiveness of the Customflex Artificial Iris Prosthesis for the Treatment of Iris Defects (AI-001), 6/12/14–6/14/16
Bartly J. Mondino, MD

Bradley R. Straatsma, MD Endowed Chair in Ophthalmology
Distinguished Professor of Ophthalmology
Chairman of the UCLA Department of Ophthalmology
Member of the UCLA Brain Research Institute
Director of the Stein Eye Institute

RESEARCH SUMMARY

Cornea and External Ocular Diseases and Immunological Disorders

Dr. Mondino’s research activity is focused on cornea-external ocular diseases, with particular emphasis on immunological disorders. He has studied the role of lymphocytes and the complement system in the immunopathogenesis of anterior segment diseases. In addition, a model of staphylococcal hypersensitivity lesions of the cornea was explored as well as the immune response to staphylococcal endophthalmitis. Other research interests included corneal dystrophies, peripheral corneal ulcers, bullous diseases of the skin and mucous membranes, collagen shields, and contact lens-related corneal ulcers.

Honors
Recognized by the Association of University Professors of Ophthalmology on January 30, 2014, in Miami, Florida, for ten years of service to the organization as its executive vice president.
Presented the Doheny Lecture, Corneal Ulcers, on June 20, 2014, at the Doheny Eye Institute in Los Angeles, California.

Public Service
Medical Advisory Board Member, Braille Institute
Board of Trustees Member, Association of University Professors of Ophthalmology
Executive Vice-President, Association of University Professors of Ophthalmology
Editorial Board Member, Ophthalmic Surgery, Lasers and Imaging
Editor, Association of University Professors of Ophthalmology, News & Views
Board of Directors Member, National Alliance for Eye and Vision Research

Research Grants
Research to Prevent Blindness: Departmental Unrestricted Grant Award (Annual), 1/1/12–12/31/14
Dr. Nouri-Mahdavi’s research is focused on improving methods to detect early glaucoma and glaucoma progression with spectral-domain optical coherence tomography (SD-OCT) and various perimetry techniques. More specifically, he is interested in detection of glaucoma progression in patients with advanced disease. SD-OCT has revolutionized glaucoma imaging. Dr. Nouri-Mahdavi is currently exploring the role of macular imaging for detection of glaucoma progression. He is also interested in exploring the structure-function relationships in eyes with angle-closure glaucoma versus eyes with primary open-angle glaucoma. Three cross-sectional and longitudinal SD-OCT imaging studies enrolling open-angle and angle-closure glaucoma patients along with normal control subjects are ongoing in the Glaucoma Division.
Steven Nusinowitz, PhD
Associate Professor of Ophthalmology
Co-Director of the Visual Physiology Laboratory
Director of the Live Imaging and Functional Evaluation (LIFE) Core
Member of the Stein Eye Institute

RESEARCH SUMMARY
Mechanisms of Retinal Degeneration

Dr. Nusinowitz’s primary research interest is focused on understanding the cellular contributions to noninvasive measures of visual function and defining the sites and mechanisms of disease action in inherited retinal and visual pathway disorders. His main approach to gaining an understanding of the site and underlying mechanism of disease action in humans is to study the patterns of electrophysiological and psychophysical responses obtained from mice in which the disruption of different cells or pathways in the visual system are specifically targeted by genetic manipulation. By comparing the patterns of responses in human disease with the patterns of responses from rodents with targeted cellular disruption, Dr. Nusinowitz is able to test hypotheses about the underlying pathophysiology in human disease and to provide a mechanism for the development of specific diagnostic tools that are sufficiently sensitive for early detection and better diagnosis of clinical disease.
Stacy L. Pineles, MD

Assistant Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Pediatric Neuro-Ophthalmology and Neurologic Causes of Strabismus

Dr. Pineles’ research interests include evaluating the surgical outcomes of strabismus surgery and studying pediatric optic nerve diseases. With her dual training in pediatric ophthalmology and neuro-ophthalmology, she has a special interest in pediatric neuro-ophthalmic diseases, as well as adult patients with neurologic causes of strabismus.

Public Service
Member, Department of Ophthalmology Residency Training Committee and Department of Ophthalmology Residency Selection Committee
Associate Residency Director, Department of Ophthalmology
Member, Research Committee, American Academy of Pediatric Ophthalmology and Strabismus
Member, Professional Education Committee, American Academy of Pediatric Ophthalmology and Strabismus
Member, Young Neuro-Ophthalmologists Committee, North American Neuro-Ophthalmology Society
Member, Walsh Committee, North American Neuro-Ophthalmology Society
Member, Amblyopia Treatment Studies Steering Committee, Pediatric Eye Disease Investigator Group
Reviewer for many scientific journals

Research Grants
Jaeb Center for Health Research: Pediatric Eye Disease Investigator Group (PEDIG), 2/28/11–12/31/18
NIH/National Eye Institute: Binocular Summation in Strabismus, 9/1/11–8/31/16
University of California, Riverside: Integrating Perceptual Learning Approaches into Effective Therapies for Low Vision: 9/1/13–7/31/15
Natik Piri, PhD

Associate Professor of Ophthalmology
Member of the Stein Eye Institute

Research Summary

Retinal Ganglion Cell Degeneration in Optic Neuropathies and Neuroprotection

The main directions in Dr. Piri’s research are defining the mechanisms leading to retinal ganglion cell (RGC) degeneration in glaucomatous neuropathy; developing strategies for preserving RGCs against neurodegeneration; and identifying and characterizing the genes critical for RGC function and integrity. Different types of RGCs have been identified based on their morphological and physiological characteristics, yet current knowledge of RGC molecular biology is very limited. Dr. Piri has initiated a study to identify the genes expressed in RGCs. Characterization of RGC-expressed genes is fundamental to a better understanding of normal RGC physiology and pathophysiology.

Another area of investigation focuses on understanding the degeneration of RGCs and their axons, which is a hallmark of glaucoma. Dr. Piri’s laboratory is analyzing retinal gene expression profiles from the glaucoma model with the aim of identifying factors involved in the initiation and execution of RGC apoptosis. Study results have implicated several members of the crystallin superfamily in this process, including alpha crystallins. Dr. Piri is also studying the involvement of oxidative stress and proteins of the thiol-redoxin system, particularly in RGC degeneration in the glaucoma model, and the neuroprotective effects of these proteins against glaucomatous RGC death.
Pradeep S. Prasad, MD

Health Sciences Assistant Clinical Professor
Chief, Division of Ophthalmology, Harbor-UCLA Medical Center
Member of the Stein Eye Institute

RESEARCH SUMMARY
Vitreoretinal Surgery and Disease Management

Dr. Prasad specializes in the medical and surgical management of diseases of the retina and vitreous. His research is focused on teleretinal screening for diabetic retinopathy, applications of wide field fundus photography for retinal vascular disease, and health care delivery for low-income populations. Dr. Prasad also provides clinical supervision and instruction to resident physicians and vitreoretinal fellows as chief of the Division of Ophthalmology at Harbor-UCLA Medical Center.
The Sampath laboratory is interested in understanding the molecular mechanisms underlying early visual processing. In particular, the focus of laboratory researchers has been on elucidating mechanisms that set the sensitivity of night vision. Night blindness, or nyctalopia, is a condition that results from abnormal signaling by the rod photoreceptors, or the retinal circuits that process rod-driven signals. Using physiological and genetic methods, the laboratory studies signal transmission in these retinal rod pathways to identify how these processes are optimized to allow our exquisite visual sensitivity.

RESEARCH SUMMARY

Molecular Mechanisms Underlying Early Visual Processing

Alapakkam P. Sampath, PhD
Associate Professor of Ophthalmology
Member of the Stein Eye Institute

Public Service
Member, Association for Research in Vision and Ophthalmology Publications Committee
Member, Neurotransmitters, Transporters, Receptors and Calcium Study Section, NIH

Research Grants
National Eye Institute: Functional Characteristics of Rod Pathways in the Retina, 2/1/14–7/31/16
University of Southern California: Experimental and Clinical Investigations of Retinal Stimulation, 10/1/13–2/28/15
David Sarraf, MD

Health Sciences Associate Clinical Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Age-Related Macular Degeneration and Retinal Imaging

Dr. Sarraf has published approximately 80 research papers, case reports, reviews, and book chapters, and he has been awarded achievement and secretariat awards by the American Academy of Ophthalmology.

Dr. Sarraf’s research focus is the dry and wet form of age-related macular degeneration (ARMD), and he has published numerous papers studying the imaging of pigment epithelial detachment and retinal pigment epithelial tears in wet ARMD and their response to therapy. Dr. Sarraf will be principal investigator for a promising upcoming study at the Stein Eye Institute evaluating the effect of lampalizumab to reduce the progression of geographic atrophy in dry ARMD.

Dr. Sarraf has also published many papers studying novel imaging findings of various retinal diseases and was one of the first to describe ischemia of the deep retinal capillary plexus and its association with various retinal disorders, including retinal venous and artery occlusion. Dr. Sarraf will also be studying the benefits of a novel optical coherence tomography (OCT) system—OCT angiography—to continue his work on the deep retinal capillary plexus.

Public Service

Associate Editor: Retinal Cases and Brief Reports, OSLI Retina
Committee Member: BCSC Retina Committee, American Academy of Ophthalmology
Executive Committee and Chair of the Young Member’s Committee, Macula Society
Member: The American Society of Retinal Specialists, Retina Society, Macula Society, and Gass Club
Co-Director: Pacific Retina Club and International Retinal Imaging Symposium
Reviewer for many scientific journals

Research Grants

Southern California Desert Retina Consultants: Intravitreal Aflibercept Injection for the Treatment of Submacular Vascularized Pigment Epithelial Detachment (EVEN Study), 2/7/13–12/31/14
Steven D. Schwartz, MD

The Ahmanson Chair in Ophthalmology
Professor of Ophthalmology
Chief of the Retina Division
Director of the UCLA Diabetic Eye Disease and Retinal Vascular Center
Director of the Macula Center
Professor-in-Residence of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Stem Cell Research

Dr. Schwartz is leading two new clinical trials testing the use of stem cell-derived retinal pigment epithelial cells to address vision loss in people suffering from Stargardt macular dystrophy and dry age-related macular degeneration.

Retinal Diseases

Dr. Schwartz’s primary areas of research include early diagnosis and treatment of diseases such as retinopathy of prematurity (ROP), diabetic eye disease, and macular degeneration. Additionally, his focus includes development and evaluation of novel medical device technologies, imaging technologies, surgical equipment (including surgical robots), and drug-delivery systems, with particular emphasis on diagnostic and treatment applications. Dr. Schwartz’s clinical research focuses on trials of novel pharmacotherapeutic agents to discover treatments for both wet and dry age-related macular degeneration, ROP, and diabetic retinopathy.

Through innovative teleophthalmological approaches to screen for eye diseases, such as diabetic retinopathy and ROP, Dr. Schwartz is dedicated to improving both the quality of and access to specialized ophthalmology care. Currently, a collaborative program with UCLA’s Gonda Diabetes Center and Venice Family Clinic is underway, in which screening for diabetic retinopathy is conducted with a nonmydriatic camera (a camera that does not require dilation of the eyes) as part of each patient’s regular diabetes treatment. Results are telecommunicated to specialists at the Stein Eye Institute for interpretation and further action.

Honors

Featured specialist on The Charlie Rose Show series on the brain that aired April 22, 2014. In the public television episode devoted to blindness, Dr. Schwartz discussed current investigations in the use of stem cells for visual restoration.

Public Service

Board Member, American Society of Retinal Specialists
Program Committee Member, Association for Research in Vision and Ophthalmology
Diabetic Eye Disease Screening, Venice Family Clinic

Research Grants

Advanced Cell Technology, Inc.: A Phase II/II, Open-Label, Multicenter, Prospective Study to Determine the Safety and Tolerability of Subretinal Transplantation…in Patients with Advanced Dry (AMD) 4/5/11–3/11/15
Advanced Cell Technology, Inc.: Research with Retinal Cells Derived from Stem Cells for Geographic Atrophy Secondary to Myopic Macular Degeneration, 4/10/14–9/1/16
Allergan Sales, LLC: DEX PS DDS Applicator System in the Treatment of Patients with Diabetic Macular Edema, 8/25/05–12/31/13
Neurotech Pharmaceuticals, Inc.: Phase I Multicenter Open Label Safety and Tolerability Clinical Trial of Ciliary Neurotrophic Factor (CNTF) in Patients with Macular Telangiectasis Type 2, 7/19/11–7/18/15
Lowy Medical Research Institute: A Natural History of Macular (Parafoveal) Telangiectasia, 9/1/05–12/31/15
Pfizer, Inc.: A Phase II/II, Open-Label, Prospective Study to Determine the Safety and Tolerability of Subretinal Transplantation…in Patients with Geographic Atrophy Secondary to Myopic Macular Degeneration, 4/10/14–9/1/16
Hui Sun, PhD

Associate Professor of Physiology and Ophthalmology
Howard Hughes Medical Institute
Member of the Stein Eye Institute

RESEARCH SUMMARY

Molecular Mechanism of Vitamin A Transport for Vision; Identification of New Therapeutic Targets for Blinding Diseases

Dr. Sun’s laboratory studies the molecular mechanism of vitamin A transport for vision and new therapeutic targets for blinding diseases such as age-related macular degeneration. Vitamin A is essential for vision because it is the precursor for the chromophore of photoreceptor proteins and also plays critical roles in eye development. Plasma retinol binding protein (RBP) is the principal carrier of vitamin A in the blood and is essential for mobilizing the hepatic vitamin A store. Dr. Sun’s laboratory identified the long-sought RBP receptor as a multitransmembrane protein of previously unknown function. It functions simultaneously as a membrane receptor and a membrane transporter that mediates cellular uptake of vitamin A. His laboratory is using a variety of techniques to study this membrane transport system.

Dr. Sun is also identifying new therapeutic targets. Specifically, his laboratory recently identified new factors that protect cone photoreceptor cells and membrane receptors for a factor that has broad therapeutic value. The overall goal is to uncover novel mechanisms that protect retina and photoreceptor cells as strategies in treating blinding diseases.
Gabriel H. Travis, MD

Charles Kenneth Feldman Chair in Ophthalmology
Professor of Ophthalmology
Co-Chief of the Vision Science Division
Associate Director of the Stein Eye Institute

RESEARCH SUMMARY

Biochemistry of Vertebrate Photoreceptors and Mechanisms of Retinal Degeneration

Dr. Travis’ laboratory uses biochemical and genetic approaches to study the visual cycle and its role in retinal and macular degenerations. Vision in vertebrates is mediated by two types of light-sensitive cells: rods and cones. These cells contain light-detecting molecules called opsin pigments. Detection of a single light particle bleaches the opsin pigment. Restoring light sensitivity to a bleached opsin involves an enzymatic pathway called the visual cycle. Mutations in the genes for many proteins of the visual cycle cause inherited blinding diseases.

One project in Dr. Travis’ laboratory studies the function of a transporter protein in rods and cones called ABCA4. Mutations in the human ABCA4 gene cause recessive Stargardt macular degeneration and cone-rod dystrophy. Dr. Travis’ group generated mice with a null mutation in this gene. Biochemical analysis of the phenotype in these ABCA4 “knockout” mice led them to the function of ABCA4 in photoreceptors, and the biochemical etiology of Stargardt disease. This understanding suggested a pharmacological strategy to reverse the biochemical defect in patients with Stargardt disease and age-related macular degeneration. A phase II clinical trial is currently underway to test a drug based on this strategy as a treatment for age-related macular degeneration.

Another ongoing project in Dr. Travis’ laboratory characterizes Rpe65, which catalyzes the critical isomerization step in the visual cycle. Previously, Dr. Travis and co-workers identified Rpe65 as the retinoid isomerase. Still another project in Dr. Travis’ laboratory concerns the mechanism of visual-pigment regeneration in cone photoreceptors. Despite the importance of cones, little is known about how visual pigments are replenished to permit sustained vision under daylight conditions. Recent results from Dr. Travis’ group point to the existence of a new enzymatic pathway for regenerating visual pigments in cones. His group is currently working to purify and clone the enzymes that define this new biochemical pathway.
Irena Tsui, MD

Assistant Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Clinical Vitreoretinal Research

Dr. Tsui’s research focuses on improving clinical outcomes in patients with retinal diseases. Her areas of interest include retinopathy of prematurity, diabetic retinopathy, ultra-wide field imaging, surgical techniques, and studying patient-centered outcomes in veterans. In addition to providing patient care at the Stein Eye Institute in Westwood, Dr. Tsai also sees patients at the Doheny Eye Center UCLA–Arcadia.
Federico G. Velez, MD

Health Sciences Assistant Clinical Professor of Ophthalmology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Strabismus and Childhood Eye Disorders

Dr. Velez’s primary research interest is studying the mechanisms of congenital and acquired forms of strabismus. He has participated in the development of guidelines for preoperative assessment and surgical approaches to patients with convergent (esotropia), divergent (exotropia), and vertical forms of strabismus, and has developed new techniques to treat pediatric patients with eyelid abnormalities and cataracts.

Dr. Velez has recently completed studies that apply bioengineering technology to the correction of ocular motility disorders. He has also identified a new ocular motility disorder in patients with the human immunodeficiency virus. He provides patient care at the Stein Eye Institute in Westwood and the Doheny Eye Center UCLA–Orange County.

Public Service
Editorial Board Advisory Panel Member, Treatment Strategies—Pediatrics, The Cambridge Research Centre
Member, American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus, Latin American Council of Strabismus, Latin American Pediatric Ophthalmology Society, Colombian Society of Ophthalmology, and Colombian Society of Pediatric Ophthalmology and Strabismus
Reviewer for many scientific journals
David S. Williams, PhD

Jules and Doris Stein Research to Prevent Blindness Professor of Ophthalmology
Professor of Neurobiology
Member of the Stein Eye Institute

RESEARCH SUMMARY

Cell Biology of the Retina and Inherited Retinal Disease

Dr. Williams’ laboratory focuses on the cell biology of photoreceptor and retinal pigment epithelium cells. His group is especially interested in proteins that function in transport and compartmentalization within these cells. These proteins include those that underlie Usher syndrome. A translational area of his research involves gene therapy experiments aimed at preventing the blindness that ensues from Usher syndrome type 1B.
RESEARCH SUMMARY

Development and Disease Therapy of the Retina

Dr. Yang is interested in the molecular and cellular mechanisms underlying retinal development and disease. Her research efforts are directed toward understanding how retinal progenitor (precursor) cells become different types of mature retinal neurons during formation of the retina. To achieve these goals, her laboratory uses a variety of molecular and cellular approaches to study genes involved in cell-to-cell communication and neuronal differentiation. As important research tools Dr. Yang utilizes special laboratory-based viruses to mediate gene transfer and advanced transgenic technologies. In addition, Dr. Yang’s laboratory is developing stem cell-based cell therapy for retinal degenerative diseases. Her research will enhance researchers’ capabilities to manipulate retinal progenitor and stem cells, thereby contributing to the effort to combat retinal degenerative diseases.
FACULTY
DOHENY EYE CENTERS UCLA

This year, we welcomed our newest UCLA Department of Ophthalmology faculty members: Doheny Eye Institute researchers and clinicians who are now also Doheny Eye Centers UCLA faculty. The listed UCLA appointments were pending at the close of the 2013–2014 academic year.

Vikas Chopra, MD
Health Sciences
Associate Clinical Professor
Medical Director,
Doheny Eye Center UCLA–Pasadena

RESEARCH SUMMARY
Glaucoma
Dr. Chopra specializes in glaucoma, and his research activities include advanced optic nerve and retinal nerve fiber layer imaging for early glaucoma detection, as well as development and validation of novel parameters for use in anterior segment optical coherence tomography devices as principal investigator at the Doheny Image Reading Center. Dr. Chopra also evaluates laser and surgical techniques for the management of glaucoma.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Pasadena

Brian A. Francis, MD, MS
Health Sciences Clinical Professor
Medical Director, Doheny Eye Center UCLA–Orange County

RESEARCH SUMMARY
Glaucoma
Dr. Francis’ clinical specialties are glaucoma and cataract. His research activities include: innovative glaucoma surgeries, minimally invasive glaucoma surgery, novel visual field techniques, glaucoma diagnostic and functional imaging, anterior segment imaging (ultrasound biomicroscopy and Fourier domain optical coherence tomography), and glaucoma laser surgery.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena

Gad Heilweil, MD
Clinical Instructor of Ophthalmology

RESEARCH SUMMARY
Degenerative Retinal Disease
Dr. Heilweil’s research activities include stem-cell therapy for degenerative retinal disease; retinal and uveal drug toxicity; and pharmacokinetics of intravitreal drugs. In addition to providing patient care at the Doheny Eye Centers UCLA, Dr. Heilweil sees patients at the Stein Eye Institute in Westwood.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena

Hugo Y. Hsu, MD
Health Sciences
Associate Clinical Professor

RESEARCH SUMMARY
Cornea and External Diseases
Dr. Hsu specializes in corneal infection and inflammation, corneal transplantation, anterior segment reconstruction, and cataract surgery. His research interests include corneal infection, ophthalmic antibiotics, and cataract extraction.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena

Alex A. Huang, MD, PhD
Assistant Professor

RESEARCH SUMMARY
Glaucoma
Dr. Huang’s clinical specialties include glaucoma, minimally invasive glaucoma surgery, trabeculectomy, glaucoma drainage devices, cyclodestruction, and complex cataracts. His research activities involve characterizing post-trabecular meshwork and scleral changes in glaucoma, optical coherence tomography visualization of aqueous humor outflow pathways in the eye, and angiographic visualization of aqueous humor outflow in the eye.

PRACTICE LOCATION
Doheny Eye Center UCLA–Pasadena
John A. Irvine, MD
Health Sciences Clinical Professor
Medical Director, Doheny Eye Centers UCLA

RESEARCH SUMMARY
Cornea and External Diseases
Dr. Irvine’s clinical specialties are cornea and external diseases (eg, tumors, infections), anterior segment surgical consultation, and prosthetic replacement of the ocular surface ecosystem (PROSE). His research activities focus on ocular infections.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena

Anne R. Kao, MD
Health Sciences
Assistant Clinical Professor

RESEARCH SUMMARY
Orbit and Ophthalmic Plastic Surgery; Neuro-Ophthalmology
Dr. Kao specializes in orbit and ophthalmic plastic surgery, and neuro-ophthalmology. Her clinical specialties include ptosis (drooping eyelids), eyelid tumors, orbital tumors, thyroid eye disease, blepharospasm, optic nerve disorders, optic nerve sheath fenestration, strabismus (ie, eye muscle disorders), and strabismus surgery.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena

Olivia L. Lee, MD
Health Sciences
Assistant Clinical Professor

RESEARCH SUMMARY
Cornea/External Diseases and Uveitis; Corneal Imaging
Dr. Lee practices two subspecialties of ophthalmology: cornea/external diseases and uveitis. She has particular interest in inflammatory ocular surface disease, corneal melts, pterygia, and anterior segment complications of uveitis. Dr. Lee performs all types of corneal transplants (eg, penetrating, lamellar, endothelial and femto-second laser-assisted keratoplasty), as well as complex cataract surgery in uveitic eyes.

Dr. Lee’s research interests focus on anterior segment imaging applied to the tear film, cornea, and conjunctiva. With her expertise in corneal imaging, a specular microscopy reading center was developed at the Doheny Image Reading Center, where she serves as an investigator.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena

Kenneth L. Lu, MD
Health Sciences
Associate Clinical Professor
Medical Director, Doheny Eye Center UCLA–Arcadia

RESEARCH SUMMARY
Cataract and Refractive Surgery
Dr. Lu specializes in cataract and refractive surgery, and his research activities are focused in the same areas.

PRACTICE LOCATION
Doheny Eye Center UCLA–Arcadia

Peter A. Quiros, MD
Health Sciences
Associate Clinical Professor

RESEARCH SUMMARY
Neuro-Ophthalmology
Specializing in neuro-ophthalmology, the clinical specialties of Dr. Quiros are: optic nerve disease, including optic neuritis and multiple sclerosis; double vision and adult strabismus; eye pain, headache, and idiopathic intracranial hypertension; Graves disease; orbital inflammatory syndromes; and stroke. Dr. Quiros’ research activities include idiopathic intracranial hypertension, headache, ocular myasthenia gravis, Graves disease, optic neuritis and multiple sclerosis, and visual rehabilitation after stroke. Dr. Quiros was the principal investigator for the recently completed idiopathic intracranial hypertension treatment trial and is currently the principal investigator for the longitudinal idiopathic intracranial hypertension treatment trial. Dr. Quiros is also a member of the Neuro-Ophthalmology Researcher and Disease Investigators Consortium (NORDIC) and is the local NORDIC director.

PRACTICE LOCATIONS
Doheny Eye Center UCLA–Orange County
Doheny Eye Center UCLA–Pasadena
Daniel B. Rootman, MD, MS
Assistant Professor

RESEARCH SUMMARY

Orbit and Ophthalmic Plastic Surgery

Dr. Rootman is an orbit and ophthalmic plastic surgery specialist. His clinical expertise includes Graves disease, orbital surgery, orbital tumors, ptosis, lacrimal disorders, blepharoplasty, blepharospasm, Botox®, cosmetic dermal fillers, endoscopic eyewirowi lift, eyelid surgery, eyelid tumors, and trauma. Research activities are on developing and refining patient-centered outcome measures for surgical care; randomized clinical trials in surgery, including ptosis, Graves orbitopathy and lacrimal disease; health economics of eyelid and facial surgery; sociodemographics of facial trauma; physiology and pathobiology of ptosis; new approaches to surgery; and measurement and assessment in medical education. In addition to providing patient care at the Doheny Eye Centers UCLA, Dr. Rootman sees patients at the Stein Eye Institute in Westwood.

PRACTICE LOCATION

Doheny Eye Center UCLA–Pasadena

SriniVas R. Sadda, MD
Professor

RESEARCH SUMMARY

Retinal and Macular Diseases

Dr. Sadda specializes in age-related macular degeneration, hereditary retinal degenerations, diabetic retinopathy, venous occlusive disease, telemedicine screening and consultation programs, as well as retinal disease diagnosis and classification. His research activities include: quantitative, automated retinal image analysis; retinal substructure assessments; advanced retinal imaging technologies; genotype-phenotype correlative studies; and vision restoration technologies, such as stem cells and prothetic vision.

PRACTICE LOCATIONS

Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Pasadena

Alfredo A. Sadun, MD, PhD
Professor

Vice Chairman, Doheny Eye Centers UCLA

RESEARCH SUMMARY

Neuro-Ophthalmology

Clinical specialties of Dr. Sadun include neuro-ophthalmology, optic nerve, optic neuropathies (eg, posterior ischemic optic neuropathy, anterior ischemic optic neuropathy, and traumatic optic neuropathy), Leber hereditary optic neuropathy, toxic and nutritional optic neuropathies, vision in AIDS, and other central nervous system disorders. Dr. Sadun’s research activities focus on human visual neuroanatomy; retinal ganglion cell degeneration and regeneration; axon populations in the human optic nerve in development, aging, and disease; and mitochondrial impairments as a cause of optic neuropathy.

PRACTICE LOCATION

Doheny Eye Center UCLA–Pasadena

Deming Sun, MD
Professor

RESEARCH SUMMARY

Research Scientist

Dr. Sun is a researcher whose primary areas of investigation include uveitis, autoimmune diseases, optic neuritis, animal disease models, and T-cell biology.

PRACTICE LOCATION

Doheny Eye Center UCLA–Arcadia

James C. H. Tan, MD, PhD
Associate Professor

RESEARCH SUMMARY

Glaucoma

Dr. Tan specializes in the medical and surgical treatment of glaucoma, as well as cataract surgery. His glaucoma research includes investigations into aqueous physiology and biology, pharmacology, and ocular imaging.

PRACTICE LOCATIONS

Doheny Eye Center UCLA–Arcadia
Doheny Eye Center UCLA–Pasadena

James W. Bisley, PhD
Assistant Professor of Neurobiology and Psychology

Member of the Stein Eye Institute
Member of the Brain Research Institute

RESEARCH SUMMARY

Cognitive Processing of Visual Information

Dr. Bisley’s research revolves around understanding the neural mechanisms underlying the cognitive processing of visual information. These cognitive processes include visual perception, visual memory, and visual attention. His recent work has focused on how the responses of neurons in the posterior parietal cortex are involved in the allocation of visual attention to neurons in visual cortices and how they guide eye movements in goal-directed visual search.

Nicholas C. Brecha, PhD
Professor of Neurobiology and Medicine

Vice Chair of the Department of Neurobiology
Member of the Stein Eye Institute
Member of the Brain Research Institute
Member of CURE: Center for Digestive Diseases

RESEARCH SUMMARY

Functional and Structural Organization of the Mammalian Retina

Dr. Brecha’s research focuses on the elucidation of the structural organization of the outer and inner retina for understanding visual information processing by the retina. Morphological studies have defined cell types and classes, and microcircuitry organization in the retina, and neurochemical studies have investigated the action of neurotransmitters and neuroactive peptides in retinal microcircuits. Experimental work has clarified the functional role of neuropeptides in the inner retina and supports the current
hypothesis that certain neuropeptides are modulators of retinal neurons and circuitry that influence light and dark adaptation; they also influence retinal circuitry that mediates form vision. Other experimental work has investigated the photoreceptor synaptic triad, a specialized synaptic complex that is the site of initial transfer of visual information from photoreceptors and is critically important for visual processing. Experimental studies are testing the idea that a vesicular mechanism underlies transmitter release from horizontal cells in this triad to mediate feedback and feed forward signaling, which is critically important for the formation of visual receptive fields. These investigations are fundamental steps in establishing the retina’s functional organization and provide the basis for understanding the pathophysiology of retinal dysfunction.

Patrick T. Dowling, MD, MPH
Chairman of the UCLA Department of Family Medicine
Kaiser Permanente Endowed Professor of Community Medicine
Member of the Stein Eye Institute

Health Care Policy and Access for Underserved Populations
Dr. Dowling is a member of the California Community Foundation’s Board of Directors and the Board of Trustees at the Charles Drew University of Medicine and Science. He has received numerous grants for international medical graduate training, residency training, and family medicine training. He has made unparalleled contributions to the community and to the training of physicians to support the community at a primary level. He is a prior Commissioner of Public Health for the Los Angeles County Department of Health and currently has funding for an innovative program to increase the number of Hispanic physicians in California. Dr. Dowling worked closely with Dr. Anne Coleman on the Remote Area Medical Program, which provided care to the homeless and indigent in the Los Angeles community. Dr. Dowling’s presence as a member of the Stein Eye Institute adds a new dimension that is being developed and pioneered by Dr. Coleman at the Institute’s Center for Eye Epidemiology.

Antoni Ribas, MD
Professor of Medicine, Surgery, and Molecular and Medical Pharmacology
Member of the Stein Eye Institute

RESEARCH SUMMARY
The Immune System and Oncogene-Targeted Therapies in the Treatment of Cancer
Dr. Antoni Ribas conducts research focused on melanoma, an aggressive form of skin and eye cancer. His research aims at developing more effective and less toxic therapies for patients with advanced melanoma by studying how the immune system can be effectively used to fight cancer and also how targeted therapies can specifically block cancer genes. His projects include laboratory and clinical translational research in adoptive cell transfer therapy using T-cell receptor engineered lymphocytes designed to seek out melanoma cells, with the application of molecular imaging and advanced monitoring of the immune system to better study how it can fight cancer. Another way to engage an anti-cancer immune response is through the use of immune modulating antibodies, in particular by releasing the immune breaks CTLA4 and PD-1. He is also testing, both in the laboratory and the clinic, novel target-ed therapies blocking cancer-causing events that result in melanoma, as well as the potential clinical applications of nanoparticle delivery of siRNA, which interferes with gene expression related to cancer. Dr. Ribas’ goal is to bring new concepts from the laboratory to the clinic to help patients with advanced melanoma.

Dario L. Ringach, PhD
Professor of Neurobiology and Psychology, Biomedical Engineering Program
Member of the Stein Eye Institute

RESEARCH SUMMARY
Visual Perception and Neurophysiology
Dr. Ringach’s research focuses on the relationship between eye movements and visual perception, as well as how motor planning and execution, such as reaching, grasping, navigating, and adjusting body posture, is influenced by visual information and impaired vision. In collaboration with a team of neurosurgeons at UCLA, Dr. Ringach’s laboratory is also recording the brain activity of patients with epilepsy who are undergoing clinical evaluation for surgical treatment. This unique opportunity is shedding new light into the processes involved in object recognition and perception.

Guido A. Zampighi, PhD
Professor of Neurobiology
Member of the Stein Eye Institute

RESEARCH SUMMARY
Intercellular Junctions and Communication
A fundamental property of cells organized in tissues is their ability to communicate with each other via highly specialized areas of plasma membrane contact, called junctions. Dr. Zampighi is studying the gap junction and the chemical synapse, two specialized junctions that mediate electrical and chemical transmission, respectively. The gap junction is composed of specialized channels containing small hydrophilic pores that span the two plasma membranes and the intervening extracellular space (the cell-to-cell channel). He is investigating the high-resolution structure of the channels as well as the mechanisms of assembly, insertion, and retrieval of the connexin proteins that form them. The chemical synapse is composed of a presynaptic neuron filled with small diameter vesicles that contain a high concentration of neurotransmitters and a postsynaptic
neuron with receptors. He is studying the mechanisms by which the synaptic vesicles attach (“dock”) to the presynaptic membrane. He uses structural (electron microscopy), biochemical, and electrophysiological techniques in an attempt to identify, purify, and characterize the channels and transporters of both junctions in an effort to increase understanding of the mechanisms mediating cell communication.

PROFESSIONAL RESEARCH SERIES

Novruz Ahmedli, PhD
Associate Research Ophthalmologist

RESEARCH SUMMARY
Studies on Müller Cells
Zbed4 is a multifunctional protein that plays a key role in the cells where it is expressed. Dr. Ahmedli’s results indicate that this important protein appears early in embryonic life and while in mouse retina it is detected only in Müller cells, in humans it is expressed in cones and Müller cells. In addition, he has found that the length and shape of Müller cell processes depend on the levels of Zbed4. Dr. Ahmedli’s work aims to identify the pathway, which is essential for proper functioning of Zbed4 in Müller cells.

Christian Altenbach, PhD
Research Ophthalmologist

RESEARCH SUMMARY
Structure and Function of Rhodopsin
The membrane protein rhodopsin is a critical first step in visual transduction, converting light energy into a chemical form in the photoreceptor cell of the eye. To understand this process on a detailed molecular level, Dr. Altenbach is using site-directed spin labeling and electron paramagnetic resonance spectroscopy to study the structure of rhodopsin in the absence of light, as well as the changes in structure caused by light.

Barry L. Burgess, BS
Research Specialist IV

RESEARCH SUMMARY
Ocular Melanoma Molecular Genetics
Mr. Burgess provides research support for the Ophthalmic Oncology Center under the direction of Tara A. McCannel, MD, PhD. His research interests include investigation of cytogenetic abnormalities of ocular melanoma and gene discovery for the metastatic form of this cancer. He has developed highly characterized cell lines from both primary ocular melanomas and metastatic lesions to complement the Center’s study of biopsy material. His research goals are to identify biochemical pathways that lead to a metastatic outcome and to find targets for therapeutic intervention that may preempt the progression of metastatic disease.

Rajendra Gangalum, PhD
Assistant Research Specialist II

RESEARCH SUMMARY
Function and Regulation of Small Heat Shock Protein αB-crystallin in Health and Disease
Dr. Gangalum’s research seeks to gain understanding of the physiological function of αB-crystallin in the developing ocular lens and nonocular tissues. αB-crystallin has been shown to associate with pathologies such as cataracts, cancer, age-related macular degeneration (AMD), and other neurodegenerative diseases. Dr. Gangalum has discovered that αB-crystallin is a Golgi-associated membrane protein, secreted into extracellular medium via exosomes from retinal pigment epithelial cells. These findings explain how αB-crystallin is detected in the protein-lipid deposits know as drusen in AMD. Dr. Gangalum has generated the transgenic mice model of childhood cataract to study the molecular basis of its pathology. Cataracts in infants are debilitating, because opacities in the lens hinder the transmission of light to the retina, which impairs the development of visual cortex in the brain. This model system is the only paradigm available for future investigations on early childhood cataracts.

Yekaterina Gribanova, MD
Associate Research Specialist I

RESEARCH SUMMARY
Characterization of Novel Retinal Protein 7R
A novel retinal protein, 7R, has been linked to autosomal recessive retinitis pigmentosa, a disease leading to incurable blindness. Dr. Gribanova is using immunohistochemical analysis, in situ proximity ligation assay, co-immunoprecipitation, immunoelectron cryomicroscopy, and gradient flotation fractionation combined with solid-phase immunoadsorption to determine and characterize 7R function in photoreceptor cells. These methods will identify 7R’s interacting partners and indicate whether 7R is contributing to the sorting and transport of phototransduction proteins to the outer segment of photoreceptor cells.

Joanna J. Kaylor, PhD
Assistant Research Ophthalmologist

RESEARCH SUMMARY
Characterization and Identification of the Enzymes of the Cone Visual Cycle
Bright light vision is solely mediated by the cone photoreceptor cells of the retina. Recent biochemical evidence supports the existence of a new metabolic pathway in the retina for the regeneration of cone opsin visual pigment. Dr. Kaylor is using biochemistry and molecular biology techniques to characterize and identify the enzymes responsible. Her work has led to the identification of the first vitamin A retinol isomerase, dihydroceramide desaturase-1 (DES1). Understanding the role of DES1 in vision is the current focus of her research.
Dr. Kwong’s research goal is to identify novel neuroprotective therapies for glaucoma. To understand the loss of retinal ganglion cells in glaucoma, his research focuses on the response and the cell death pathway of retinal ganglion cells in animal models related to optic nerve injury and glaucoma. Dr. Kwong and his colleagues recently found retinal ganglion cell-specific proteins. He is utilizing these proteins to visualize retinal ganglion cells and to investigate their function in retinal ganglion cells during degeneration. He is also applying pharmacologic techniques to evaluate therapies that enhance endogenous neuroprotective responses against glaucomatous, excitotoxic, and axonal damage to nerve cells, and is utilizing multidisciplinary methods to understand the protective mechanisms.

Dr. Matynia is investigating the mechanisms of photoallodynia, a condition in which normal levels of light produce or enhance ocular or headache pain. Using a combination of behavioral, molecular, and cellular approaches in genetic mouse models, the goal is to identify mechanisms of light-pain association for different causes of photoallodynia, including corneal, retinal, and central causes such as dry eye injury, achromatopsia, and migraine respectively. The research findings will form the basis of treatment strategies for this condition.

Dr. Ortube is a fellowship-trained specialist in pediatric ophthalmology, strabismus, and pediatric genetic conditions. She is an investigator in four clinical and translational research projects related to ocular genetics. The genetics of inherited eye disorders and Stargardt protocols provide clinical characterization of affected individuals and at-risk family members. The Genetics of Age-Related Maculopathy study focuses on the genetic and environmental risk factors that contribute to age-related maculopathy. The protocols use state-of-the-art imaging and functional technologies in conjunction with molecular genetic testing to identify causative genes and mutations. Dr. Ortube has a special interest in children born with craniofacial ocular disorders. She is also investigating a simple, noninvasive, rapid method for widespread screening of diabetics using the pupillary light reflex. This study aims to identify those who may require medical attention and/or therapy for diabetic retinopathy. Dr. Ortube is a co-investigator in collaborative research efforts with the University of Pittsburgh and Neurokinetics, Inc.

Dr. Radu’s research focuses on the visual cycle and underlying biochemical and molecular mechanisms of macular degeneration. She studies the in vivo association of the complement negative regulator genes and age-related macular degeneration (AMD) development. The mechanism by which dysfunction of complement factor H (CFH, one of the complement regulatory genes) causes AMD is not known. To investigate the relationship between abnormal build-up of vitamin A-based toxic compounds such as A2E and the complement system, Dr. Radu will generate a mouse lacking both genes ABCA4 and CFH. This complex mouse genetic model will advance understanding of the relationship between lipofuscin accumulation, complement activation, and photoreceptor degeneration in AMD, and it will be a valuable tool for developing new treatments for this disease.

Dr. Ratliff investigates the mechanisms by which the retina creates a metabolically efficient representation of visual information. This work combines techniques from patch-clamp electrophysiology, mathematical modeling, and molecular simulations.

Mr. Ruiz is a molecular biologist who has been directly involved in the cloning and characterization of important enzymes critical for the proper functioning of the visual cycle, such as the lecithin retinol acyltransferase (LRAT) enzyme. Another area of investigation is the generation and evaluation of knock-out mouse models for LRAT and a second visual cycle enzyme, the retinol binding protein receptor STRA6. Currently, Mr. Ruiz is analyzing genes, such as ARMS2 and HTRA1, which are thought to be involved in age-related macular degeneration.
Kiyo Sakagami, PhD
Assistant Research Ophthalmologist

RESEARCH SUMMARY

Hedgehog Signaling and PTEN/PI3K Signaling on Retinal Development

Dr. Sakagami’s research aims to understand how extracellular signals coordinate retinal cell fate and behavior during development, using genetic strategies for conditional mutagenesis in the mouse. The more specific goals of her research are to understand how hedgehog signaling regulates bHLH genes to determine cell cycle and cell fate decisions and to investigate the potential role of PTEN/PI3K signaling on retinal formation.

Quan Yuan, PhD
Assistant Research Ophthalmologist

RESEARCH SUMMARY

Biochemistry of Visual Cycle and Retinal Degeneration

Dr. Yuan’s research focuses on the biochemical mechanism of key proteins involved in the retinoid visual cycle. Retinal Pigment Epithelium Specific Protein 65kD (Rpe65) is one of the most important enzymes in the visual cycle that converts all-trans-retinyl ester to 11-cis-retinol and regenerates the visual pigment. He has investigated the biochemistry behind the interaction of Rpe65 with ER membrane and resolved the puzzle of Rpe65 membrane association. He is also investigating the chemical mechanism that regulates Rpe65 enzymatic activity, using chemical and state-of-the-art instrumental approaches. In other studies, Dr. Yuan and his colleagues are identifying candidate enzymes involved in the putative secondary isomerase pathway in cone dominant species. Another research interest is elucidating the biochemistry of ABCA4 protein in Stargardt disease and age-related macular degeneration.

PROFESSIONAL CLINICAL SERIES

John D. Bartlett, MD
Assistant Clinical Professor of Ophthalmology
Clinical Director, University Ophthalmology Associates

Cataract Surgery

Dr. Bartlett provides clinical supervision to resident physicians at the University Ophthalmology Associates and teaches medical students during their ophthalmology surgical subspecialties clinical rotation. He is also responsible for the continued development of the resident cataract surgery educational curriculum.

Melissa W. Chun, OD
Associate Clinical Professor of Ophthalmology
Director of the UCLA Vision Rehabilitation Center

RESEARCH SUMMARY

Vision Rehabilitation

Dr. Chun’s clinical research interests are in the areas of vision rehabilitation outcomes and training techniques that maximize visual function. She is a member of the Low Vision Research Network, a nationwide collaboration of low vision specialists for multicenter clinical studies. She
is currently participating in the Low Vision Rehabilitation Outcomes Study, a multicenter pilot study that utilizes surveys and questionnaires to assess outcome and effectiveness of low vision rehabilitation.

Rachel Feit-Leichman, MD
Associate Physician Diplomate
Cataract Surgery
Dr. Feit-Leichman divides her time between supervising residents and providing patient care at the Stein Eye Institute’s Urgent Care Clinic, University Ophthalmology Associates; and teaching cataract surgery and overseeing residents at the ophthalmology clinic of the Harbor-UCLA Medical Center. Dr. Feit-Leichman is also active in striving to improve patient access to eye care in the greater Los Angeles County Healthcare System.

Karen Hendler, MD
Clinical Instructor of Ophthalmology
RESEARCH SUMMARY
UCLA Mobile Eye Clinic
Dr. Hendler works with the UCLA mobile eye clinic providing services to the underserved children of Los Angeles County as part of the Center for Community Outreach and Policy at UCLA. The goal is to determine the need for prescriptive lenses in preschool children and to detect the presence of amblyopia or other eye conditions or diseases. Dr. Hendler is also participating in epidemiologic studies on the outcome of screening of preschool children.

Catherine J. Hwang, MD, MPH
Associate Physician Diplomate
Assistant Clinical Professor of Ophthalmology
RESEARCH SUMMARY
Thyroid Eye Disease, Ocular Surface Disease, and Eyelid Disorders
Dr. Hwang’s research includes studies involving thyroid eye disease (Graves disease), ocular surface disease, and eyelid disorders such as blepharospasm. Dr. Hwang has a dedicated thyroid eye disease clinic to investigate the clinical course of the disease and treatments, as well as to provide education and patient support. The clinic is the first in the country to provide an orbital specialist, Dr. Hwang, and a rheumatologist, Dr. Ben-Artzi, who work together to evaluate and treat patients affected with thyroid eye disease. Dr. Hwang will be starting a blepharospasm clinic in order to better educate patients, form support groups, and aid in clinical studies. In addition, Dr. Hwang collaborates with researchers from other departments, such as interventional radiology and head and neck surgery, on various projects.

Batrool Jafri, MD
Associate Physician Diplomate
Assistant Clinical Professor of Ophthalmology
RESEARCH SUMMARY
Cornea/External Disease/Refractive Surgery
Dr. Jafri provides patient care as well as supervision to resident physicians and cornea fellows at the Stein Eye Institute. Her focus is medical and surgical treatment of diseases of the cornea, external disease, and refractive conditions like near and far sightedness. She also provides general ophthalmic care and offers cataract surgery with premium intraocular lens implants.

Monica R. Khitri, MD
Associate Physician Diplomate
RESEARCH SUMMARY
Pediatric Ophthalmic Diseases and Strabismus
Dr. Khitri specializes in the evaluation and treatment of pediatric ophthalmic diseases as well as childhood and adult strabismus. She teaches residents and fellows at both the Stein Eye Institute and Harbor-UCLA Medical Center, where she heads the pediatric ophthalmology service. Dr. Khitri is also actively involved with the UCLA Mobile Eye Clinic, bringing high quality eye care to children with otherwise poor access to ophthalmic providers.

Tania Onclinx, MD
Clinical Instructor of Ophthalmology
Associate Physician Diplomate
RESEARCH SUMMARY
Urgent Care and Clinical Supervision
Dr. Onclinx attends at the Urgent Care Walk-In service at the Stein Eye Institute. She teaches resident physicians and medical students at the University Ophthalmology Associates during their subspecialty clinical rotation. She also provides clinical supervision to resident physicians at Ronald Reagan UCLA Medical Center and UCLA Medical Center, Santa Monica.

Susan S. Ransome, MD
Associate Physician Diplomate
Clinical Instructor of Ophthalmology
RESEARCH SUMMARY
Cytomegalovirus Retinitis
Dr. Ransome is participating in several clinical research studies involving HIV-infected patients, some of whom have AIDS and cytomegalovirus retinitis. In one study, investigators are following patients over time to see what types of eye problems develop in HIV-infected individuals in the era of potent antiretroviral therapies. Dr. Ransome is also following patients with HIV who have diabetes to see whether there is increased risk of development or progression of diabetic retinopathy when subjects are treated for abdominal lipodystrophy with Egrifta (tesamorelin).
Meryl L. Shapiro-Tuchin, MD
Associate Physician Diplomate
Assistant Clinical Professor of Ophthalmology
Director of the Ophthalmology Inpatient Consultation Service

Comprehensive Ophthalmology
Dr. Shapiro-Tuchin provides clinical supervision to resident physicians while they are attending patients at University Ophthalmology Associates clinics. She also functions as Director of the Ophthalmology Inpatient Consultation Service, assisting resident physicians in their evaluation of inpatients admitted to the David Geffen School of Medicine at UCLA.

Mehryar “Ray” Taban, MD, FACS
Assistant Clinical Professor of Ophthalmology
Associate Physician Diplomate

Aesthetic and Reconstructive Oculoplastic Surgery
Dr. Taban provides clinical supervision to resident physicians and oculoplastic fellows at the Stein Eye Institute. He focuses on nonsurgical and surgical management of disorders of the eyelid, orbital, and lacrimal system.

LECTURER
Kathleen L. Boldy, VMD
Lecturer in Ophthalmology

STEIN EYE INSTITUTE EMERITUS FACULTY

Dean Bok, PhD
Dolly Green Chair of Ophthalmology
Professor of Ophthalmology Emeritus (Active Recall)
Distinguished Research Professor of Neurobiology
Member of the Brain Research Institute
Member of the Stein Eye Institute

Michael O. Hall, PhD
Professor of Ophthalmology Emeritus
Founding Member of the Stein Eye Institute

Robert S. Hepler, MD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Chief of the Neuro-Ophthalmology Division
Member of the Stein Eye Institute

Allan E. Kreiger, MD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Chief of the Retina Division

Bradley R. Straatsma, MD, JD
Professor of Ophthalmology Emeritus (Active Recall)
Founding Chairman of the Department of Ophthalmology
Founding Director of the Stein Eye Institute

Barry A. Weissman, OD, PhD
Professor of Ophthalmology Emeritus (Active Recall)

Marc O. Yoshizumi, MD
Professor of Ophthalmology Emeritus
Member of the Stein Eye Institute

Richard W. Young, PhD
Professor of Neurobiology Emeritus
Member of the Stein Eye Institute
PROGRAMS
Patient Care Services

The Institute’s program of care for patients encompasses the full range of eye diseases. Nationally and internationally renowned faculty, along with highly skilled clinical fellows and physician residents, provide integrated consultation and treatment, including new diagnostic and therapeutic procedures that have been made available through recent scientific advances. Institute ophthalmologists are supported in their efforts by skilled optometrists, orthoptists, technicians, and nurses. Care is delivered in distinctive subspecialty treatment centers, service areas, and clinical laboratories, as well as in specially equipped ophthalmic surgical suites and a dedicated inpatient unit. In addition, the Stein Eye Center–Santa Monica and the Doheny Eye Centers UCLA offer premier eye care services in convenient neighborhood locations.

Faculty Consultation Service

Institute faculty members provide direct consultation and treatment, including emerging therapies, to patients through the Ophthalmology Faculty Consultation Service. Faculty members have extensive, advanced training in ophthalmic subspecialties, providing referring physicians and patients with a valuable resource for special eye problems.

Inpatient Consultation Service

Stein Eye Institute–Westwood

The Ophthalmology Inpatient Consultation Service, operating 24 hours a day through the Ronald Reagan UCLA Medical Center, provides consultation and treatment to pediatric and adult patients admitted to the hospital’s medical, surgical, and psychiatric inpatient services. Led by Dr. Meryl L. Shapiro-Tuchin, the consultation team consists of physician-residents. Subspecialty coverage from faculty is provided as needed.

Stein Eye Center–Santa Monica

The Ophthalmology Inpatient Consultation Service, operating through the Stein Eye Center–Santa Monica, provides consultation and treatment to pediatric and adult patients admitted to the hospital’s medical, surgical, and psychiatric inpatient services. Led by Dr. Laura Bonelli, the consultation team consists of physician-residents. Subspecialty coverage from faculty is provided as needed.

Surgical Services

Ophthalmic surgery of every variation, from cataract extraction to removal of ocular and orbital tumors, is performed in the Institute’s dedicated operating rooms. Additionally, laser vision-correction surgeries, such as laser-assisted in situ keratomileusis (LASIK) and certain aesthetic and retinal laser surgeries and injection procedures, are performed in designated outpatient procedure rooms. Faculty members perform surgical procedures according to their specific ophthalmic specialty. They are joined by other medical specialists, including anesthesiologists, nurses, and technicians to ensure the highest quality preoperative and postoperative care.

University Ophthalmology Associates

Comprehensive and subspecialty eye care in all medical and surgical areas of ophthalmology is offered through University Ophthalmology Associates. Dr. John D. Bartlett is medical director, and ophthalmologists who are members of the UCLA Medical Group staff the practice.

Stein Eye Institute, Westwood

100 Stein Plaza, UCLA
Los Angeles, CA 90095
Referral Service: (310) 794-9770
Emergency Service: (310) 825-3090
After-Hours Emergency Service: (310) 825-2111

Stein Eye Center–Santa Monica

The Stein Eye Center, under the direction of Dr. Colin A. McCannel, offers the world-renowned comprehensive and subspecialty eye care of the Stein Eye Institute at a convenient location in Santa Monica. Established in 2011, the Stein Eye Center–Santa Monica features well-equipped exam rooms, an optical shop, convenient on-site parking for easy access, and testing facilities offering a wide range of examinations, including visual field, corneal mapping (corneal topography), intraocular lens measurement, fluorescein angiography, spectral domain optical coherence tomography, and other diagnostic retinal imaging techniques. Nearly all the evaluation, diagnosis, testing, and treatment services available at the Stein Eye Institute in Westwood are offered at the Stein Eye Center–Santa Monica, by experts in retinal disorders, corneal disorders, glaucoma, neuro-opthalmology, and laser refraction surgery. For surgeries and seldom-needed tests requiring specialized laboratories, patients can be referred to the Institute’s main facility in Westwood.

Stein Eye Center–Santa Monica

1807 Wilshire Boulevard, Suite 203
Santa Monica, CA 90403
Telephone: (310) 829-0160
Fax: (310) 829-0170
The UCLA Department of Ophthalmology and the Doheny Eye Institute formed a historic affiliation in 2014, and patient access to eye care was immediately broadened across Los Angeles and into Orange County, with the opening of three Doheny Eye Center UCLA locations: Arcadia, Orange County, and Pasadena. The Doheny and Stein Eye Institutes share a long tradition of excellence, and through this partnership, the respective strengths that gained each Institute an international reputation have been combined. The board-certified Doheny ophthalmologists that patients and referring physicians know and trust are now members of the UCLA Department of Ophthalmology.

Doheny Eye Centers UCLA–Arcadia
As Medical Director of the Doheny Eye Center UCLA–Arcadia, Dr. Kenneth L. Lu oversees a renovated office that includes 12 exam rooms, dedicated diagnostic equipment, and attractive patient areas. The Center provides comprehensive ophthalmology, and nearly all subspecialty services, including glaucoma, retina, and cornea.

The Doheny Eye Center UCLA–Arcadia, which opened April 1, 2014, serves patients in the broader Arcadia region and San Gabriel area, expanding the UCLA Department of Ophthalmology’s reach in Los Angeles County. The Arcadia Center is easily accessible from two freeways and provides on-site, free parking.

Doheny Eye Center UCLA–Arcadia
622 W. Duarte Road, Suite 101
Arcadia, CA 91007
Telephone: (626) 254-9010
Fax: (626) 254-9019

Doheny Eye Center UCLA–Orange County
The Doheny Eye Center UCLA–Orange County opened on May 15, 2014, in the Orange Coast Memorial Medical Center, broadening the reach of the UCLA Department of Ophthalmology south to Orange County.

Newly renovated, the Orange County location, overseen by Medical Director Dr. Brian A. Francis, offers comprehensive ophthalmology, as well as glaucoma, retina, and cornea subspecialty services. The Doheny Eye Center UCLA–Orange County includes 12 exam rooms, dedicated diagnostic equipment, and inviting patient areas.

Doheny Eye Center UCLA–Orange County
Orange Coast Memorial Medical Center
18111 Brookhurst St., Suite 6400
Fountain Valley, CA 92708
Telephone: (714) 963-1444
Fax: (714) 963-1234

Doheny Eye Center UCLA–Pasadena
The Doheny Eye Center UCLA–Pasadena, which opened on July 1, 2014, serves as the primary hub of the Doheny Eye Centers UCLA. Located on the second floor of the Huntington Pavilion, the Doheny Eye Center UCLA–Pasadena provides expanded vision care services and clinics devoted to retina and cornea; comprehensive ophthalmology and oculoplastics; neuro-ophthalmology; and glaucoma. Each subspecialty clinic has dedicated, state-of-the-art diagnostic laser suites, as well as in-office procedure rooms. More complex procedures are performed at the Huntington Pavilion Surgical Suites, which are located on the building’s third floor.

The Huntington Pavilion is home to a wide variety of medical practitioners, which provides physicians with ease of referral for patients requiring specialized eye care and provides patients with the added convenience of seeing their doctors and having any necessary services all in one location. The Medical Director of the Doheny Eye Center UCLA–Pasadena is Dr. Vikas Chopra.

Doheny Eye Center UCLA–Pasadena
Huntington Pavilion
625 S. Fair Oaks Blvd., 2nd Floor
Pasadena, CA 91105
Telephone: (626) 817-4747
Fax: (626) 817-4748
Research and Treatment Centers

The Ophthalmology Treatment Centers provide subspecialty care from faculty physicians who are actively involved in related research, enabling emerging and experimental treatment options to be developed for a gamut of eye disorders. In addition to comprehensive treatment, the Centers provide both patients and physicians with expert diagnostic and consultation services for diseases that are difficult to identify and treat. Ophthalmology faculty work closely with other specialists, both within the Stein Eye Institute and in other UCLA clinical departments, to create a multidisciplinary team customized for each patient’s unique medical needs.

Summary of Patient Care Statistics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty Consultation Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient visits</td>
<td>89,186</td>
<td></td>
</tr>
<tr>
<td>University Ophthalmology Associates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient visits</td>
<td>22,398</td>
<td></td>
</tr>
<tr>
<td>Inpatient Consultation Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient evaluations</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>Clinical Laboratories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedures</td>
<td>37,811</td>
<td></td>
</tr>
<tr>
<td>Surgery Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of procedures</td>
<td>16,188</td>
<td></td>
</tr>
<tr>
<td>Mobile Eye Clinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients seen</td>
<td>12,990</td>
<td>89,186</td>
</tr>
<tr>
<td>Ocular abnormalities</td>
<td>17%</td>
<td>190</td>
</tr>
<tr>
<td>Number of trips</td>
<td></td>
<td>190</td>
</tr>
</tbody>
</table>

*Includes screenings of special program

Center for Community Outreach and Policy

The Stein Eye Institute’s Center for Community Outreach and Policy, under the direction of Dr. Anne L. Coleman, is dedicated to the principle that all individuals deserve the best vision attainable. Building upon the Institute’s long tradition of community service and leadership at the interface of ophthalmology and public health, the Center conducts vital research in public-health ophthalmology through the UCLA Center for Eye Epidemiology and provides high-impact community-based services, such as the UCLA Mobile Eye Clinic.

UCLA Center for Eye Epidemiology

The UCLA Center for Eye Epidemiology was established in 1997 to promote interdisciplinary investigations into blinding diseases of public health importance. It is supported by private donations, including an endowment established by The Ahmanson Foundation. The Center maintains and improves vision health through public health research and intervention, and serves as a coordinating body for expanding and sharing information.

Center members have expertise in epidemiology, biostatistics, health policy, public health, and international health. Members draw on their diverse backgrounds and complementary skills to promote an understanding of issues related to vision health as it affects individuals, communities, and society. The Center encourages collaborative research among faculty and investigators from various UCLA departments and other institutions around the world to advance knowledge related to the causes and prevention of specific eye diseases.

Aesthetic Center

The Aesthetic Center, under the direction of Dr. Robert Alan Goldberg, provides services to patients who are interested in enhancing their appearance through aesthetic surgery. Drs. Catherine J. Hwang and Daniel Rootman also see patients. Established in 1998, the Center has earned a reputation for high quality, individualized care delivered by surgeons trained in both ophthalmic and plastic surgery.

Surgical services include upper and lower eyelid blepharoplasty, endoscopic forehead lifting, endoscopic midface surgery, lifting of the neck and face, liposuction, fat transfer, and skin treatment, as well as dermal filler and other cosmetic injections to smooth facial lines. Minimally invasive approaches are utilized to provide the optimal aesthetic result. A major goal of the Center is to conduct research focused on improving understanding of facial aging, surgical healing, and on developing new techniques for aesthetic surgery. Center physicians have pioneered minimal incision surgical techniques to enhance the normal function and appearance of the eyes and face, and often receive referrals for complex and reoperative plastic surgery cases.

Stein Eye Institute | Research and Treatment Centers
UCLA Mobile Eye Clinic

For more than 40 years, the UCLA Mobile Eye Clinic has supported patient care and screening programs in neighborhoods where poverty and vision disabilities intersect. The dedication and hard work of UCLA Mobile Eye Clinic ophthalmologists, technicians, and volunteers have touched the lives of hundreds of thousands of individuals.

The UCLA Mobile Eye Clinic, a 39-foot-long bus specially outfitted with eye examination equipment, is supported by charitable contributions to the Stein Eye Institute. The UCLA Mobile Eye Clinic’s staff of trained ophthalmic personnel provides general eye care to over 4,000 underserved adults and children annually throughout Southern California. Services include ophthalmic examination and refraction, diagnosis of potential or existing eye disorders, treatment of some ocular diseases, and appropriate referral of patients who need additional care.

Center for Regenerative Medicine in Ophthalmology

Representing a milestone in the therapeutic use of stem cells, in 2011, Stein Eye Institute clinician-scientists successfully transplanted the first human embryonic stem-cell-derived retinal pigment epithelial cells into the eyes of legally blind patients with Stargardt disease and dry macular degeneration.

The Center for Regenerative Medicine in Ophthalmology (CRMO), under the co-direction of Drs. Sophie X. Deng and Gabriel H. Travis, is building upon these efforts, using stem cells for the treatment of corneal disorders and retinal degenerative diseases. The CRMO fosters collaboration between basic scientists and clinicians, including Drs. Debora Farber, Jean-Pierre Hubschman, Steven Schwartz, and Xian-Jie Yang, to translate advances in basic science research into new and improved clinical therapies.

Many of the blinding eye diseases, including glaucoma, macular degeneration, and corneal diseases, are due to the loss of functional tissue. The development of effective and safe individualized stem-cell-based therapies relies on robust basic science, translational, and clinical research. The CRMO supports current stem cell studies and pursues new research programs to diagnose, treat, and ultimately cure and prevent blinding eye diseases.

Clinical Research Center

The UCLA Department of Ophthalmology Clinical Research Center (CRC) was established in 1998 to provide core support to faculty members who are conducting patient-based research studies. This support involves vital, behind-the-scenes activities that facilitate the clinical research process. Dr. Gary N. Holland serves as director of the CRC; additional members of the Board of Directors during 2013–14 included Drs. Joseph Caprioli, Michael B. Gorin, Ralph D. Levinson, and Steven D. Schwartz. The CRC has a full-time administrator, Ms. Ellen Haupt, and an in-house statistician, Fei Yu, PhD. CRC staff members interact with granting agencies and government regulatory bodies, assist with the preparation of grant applications, participate in the design and management of clinical studies, and perform data collection and analysis functions.

Institute faculty members are currently conducting more than 70 clinical research studies (listed in the Appendices). Patients can volunteer to participate in studies that contribute to a better understanding of ocular disorders or that evaluate new, potentially better treatments for various diseases of the eye.

Contact Lens Center

The Contact Lens Center, under the supervision of Dr. Vivian A. Phan, serves patients with all ophthalmic diagnoses that can be treated with contact lenses. The Center’s primary focus is on customized specialty lenses that visually rehabilitate conditions, such as keratoconus, corneal transplants, corneal scarring, postrefractive surgery ectasia, ocular surface disease, and aphakia. Dr. Phan also prescribes contact lenses to address farsightedness, nearsightedness, and presbyopia.

The specialty lenses that are available through the Contact Lens Center include rigid gas permeable contact lenses, multifocal contact lenses, hybrid lenses, scleral lenses, custom soft lenses, soft lenses for irregular corneas, prosthetic soft lenses, pediatric aphakic lenses, and adult aphakic lenses.

Dr. Phan’s clinical research is focused on keratoconus and scleral lenses for the treatment of ocular surface...
A large majority of her patients require custom contact lenses and are referred by corneal specialists.

Diabetic Eye Disease and Retinal Vascular Center

Under the direction of Dr. Steven D. Schwartz, the Diabetic Eye Disease and Retinal Vascular Center provides diabetic patients with comprehensive ophthalmic care. Established more than a decade ago, the Center has contributed significantly to the understanding, treatment, and prevention of diabetic eye disease. Current focus is on innovation in technologies and techniques that expand the standard of treatment, such as new lasers and laser strategies, refinement of microsurgical techniques specific to diabetic eye diseases, and nontraditional treatment approaches.

The Center’s treatment philosophy is based upon the systemic nature of diabetes. Patient care is coordinated with other UCLA departments to address the special needs of diabetics that lie outside the field of ophthalmology. Center treatment interventions include laser and ophthalmic surgery. Recognizing the special care needed for diabetics in any surgical situation, Center physicians perform all eye surgeries for diabetics, including vitrectomy, cataract surgery, and retinal reattachment.

Eye Trauma and Emergency Center

The Eye Trauma and Emergency Center, under the direction of Dr. Robert Alan Goldberg, provides immediate response to ophthalmic emergencies through an eye trauma team available 24 hours a day for consultative, medical, and surgical care involving both primary and secondary ocular repairs. Ophthalmic emergency care has been provided by the UCLA Department of Ophthalmology since its inception. In 1980, the Eye Trauma and Emergency Center was formally established to encompass all levels of ocular trauma within the UCLA hospital system, including support to affiliated institutions.

Patients are commonly referred to the Center for such ocular traumas as ruptured globe, intraocular foreign bodies, acute orbital hypertension, retinal detachment, chemical burns of the cornea and conjunctiva, and acute vitreous hemorrhage. The Center offers complete evaluation and treatment of the traumatically injured eye, including vitreoretinal and/or orbital and ophthalmic plastic surgery, anterior segment surgery, and medical follow up. Expertise is provided for both urgent primary repair and scheduled secondary repair.

Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease

Established with a generous pledge from Gail and Gerald H. Oppenheimer, the Gerald Oppenheimer Family Foundation Center for the Prevention of Eye Disease is committed to the discovery of agents and methods to prevent ophthalmic diseases. Areas of study supported by the Foundation include genetic and environmental factors that may cause eye disease, and pharmacologic and natural agents to prevent eye disease. The Center complements an expanding array of research in many other fields at UCLA, where rigorous scientific methods are being applied to study novel approaches to health care.

Glaucoma Center for Excellence in Care and Research

In the United States, glaucoma is the second cause of irreversible legal blindness. If glaucoma is detected early, however, vision loss can be slowed or even prevented. Under the direction of Dr. Joseph Caprioli, the Glaucoma Center for Excellence in Care and Research is committed to giving each patient a chance for a brighter future and a life filled with sight.

Stein Eye Institute researchers, Drs. Anne L. Coleman, JoAnn A. Giacone, Jacky M. K. Kwong, Simon K. Law, Kouros Nouri-Mahdavi, and Natik Piri, are working with researchers and statisticians from the UCLA School of Public Health to identify individuals at greatest risk for vision loss, to develop and assess therapeutic strategies, and to implement new treatments to preserve vision.

UCLA Laser Refractive Center

The UCLA Laser Refractive Center is under the direction of Dr. David Rex Hamilton. Founded in 1991, the Center specializes in refractive surgery of both the cornea and lens of the eye, including clinical and research applications of new laser technology. The Center is one of a few in the United States to pioneer investigations into laser eye surgery.

The UCLA Laser Refractive Center offers all cornea refractive procedures, including LASIK and LASEK/PRK, astigmatic keratotomy, conductive keratoplasty, and intracorneal ring implantation. Advanced intraocular lens (IOL) procedures are also available, including presbyopia-correcting IOLs (multifocal and accommodating), toric IOLs, and phakic IOLs. Patients referred to the Center undergo a complete ocular examination that includes corneal topographic mapping, wavefront analysis, and corneal biomechanical measurements to identify conditions that may interfere with surgical correction of refractive errors. Candidates for laser or intraocular lens surgery receive intensive education to understand the benefits, risks, and alternatives to surgery. Participation in clinical trials for new refractive devices and techniques to treat nearsightedness, farsightedness, and presbyopia may be an option for qualified patients. For more information about the UCLA Laser Refractive Center, go to: www.uclaser.com and lasik.ucla.edu.
Macular Disease Center

The Macular Disease Center, under the direction of Dr. Steven D. Schwartz, was created in 1994 in response to the growing national incidence of macular degeneration. The Center’s mission is threefold: provide high-quality patient care, utilizing standard and developing treatments; offer associated rehabilitation services, such as low-vision aids and counseling, in order to enhance quality of life for patients; and promote collaborative translational research between clinicians and basic science researchers into the cause of macular disease.

Patients with the atrophic or dry form of macular disease are evaluated and often considered for clinical trials, such as the stem cell programs, and their cases are followed at the Macular Disease Center in conjunction with services offered by the Vision Rehabilitation Center. Patients with the exudative or wet form of macular disease are diagnosed and treated with cutting-edge therapies. Treatment options for wet macular disease include therapy and participation in clinical studies that are matched to the patient’s disease status. A patient coordinator is available to answer questions and provide information on an ongoing basis.

Ocular Inflammatory Disease Center

The Ocular Inflammatory Disease Center, under the direction of Dr. Gary N. Holland, was established in 1985 to coordinate research, educational activities, and patient-care services related to a broad spectrum of inflammatory eye disorders, including uveitis, infectious corneal ulcers, endophthalmitis, autoimmune diseases of the cornea and ocular surface, and the ophthalmic manifestations of HIV disease. The Center has a long history of participating in clinical studies and drug-therapy trials that have furthered the understanding and treatment of these diseases. Center faculty members were the first to describe cytomegalovirus retinitis as an ophthalmic manifestation of AIDS; today the Center is a nationally recognized site of expertise for AIDS-related ophthalmic disease. Other special clinical and research programs have been developed in the following areas: ocular toxoplasmosis, uveitis in children, birdshot chorioretinopathy, immunogenetics of inflammatory eye diseases, unusual corneal infections, and mediators of intraocular inflammation.

Ophthalmic Oncology Center

The Ophthalmic Oncology Center, under the direction of Dr. Tara A. McCannel, is renowned for its expertise in teaching, research, and clinical management of adult posterior segment tumors. Established in the early 1980s by the Institute’s Founding Director, Dr. Bradley R. Straatsma, the Center is internationally recognized for the diagnosis and management of ocular melanoma. The Center serves as a hub for national, long-term studies investigating ocular melanoma, and played an important role in the Collaborative Ocular Melanoma Study sponsored by the National Eye Institute.

The Center’s clinical goal is successful treatment of the primary eye tumor. Patients diagnosed with ocular melanoma may be offered highly sophisticated treatment plans coordinated with UCLA radiation physicists and radiation oncologists. Patients may also qualify to participate in clinical research studies in partnership with the UCLA Jonsson Comprehensive Cancer Center. The Center’s primary research goal is to gain a fundamental understanding of the molecular biology of metastatic ocular melanoma. In addition to providing genetic prognostic information to patients on their risk of tumor metastasis, the Center has identified key genes associated with metastatic tumors.

Optic Neuropathy Center

Under the direction of Dr. Anthony C. Arnold, the Optic Neuropathy Center provides multidisciplinary consultation, diagnosis, and treatment for patients with complex diseases involving the optic nerve. Established in 1991, the Center incorporates specialized facilities and equipment for diagnostic testing and offers consultation from neuro-ophthalmologists, orbital surgeons, neurologists, neuro-radiologists, and neurosurgeons.

Patients referred to the Optic Neuropathy Center receive advanced diagnostic testing of the orbit and optic nerve to assist in evaluation. Extensive analysis of diagnostic data, together with information from the patient’s medical history and comprehensive physical examination, enables Center physicians to determine the nature of the disease and devise a treatment plan. Treatment may be medical or surgical depending on the nature of the referral and the patient’s disease status. As part of the Center’s clinical research effort, physicians are refining disease classifications along with diagnostic and treatment approaches to further the field of optic neuropathy and improve options for patients with these complex disorders.

Orbital Disease Center

The Orbital Disease Center, under the direction of Dr. Robert Alan Goldberg, was founded in 1991. The Center brings multidisciplinary expertise to the treatment and study of orbital diseases arising from trauma, cancer, inflammation, and infection. Care is organized around a team of experts in ophthalmology, neuroradiology, neurosurgery, head and neck surgery, radiation oncology, and craniofacial surgery, bringing to the treatment of orbital diseases a depth of knowledge and experience not available elsewhere in Southern California.
The Center provides both medical and surgical management of orbital diseases. The team performs procedures that are not usually available in the community, including orbital decompression microsurgery for orbital apical tumors, optic canal decompression, combined interventional neuroradiology procedures for vascular tumors, and bony reconstruction to address traumatic or congenital defects. The Center has an active program in thyroid eye disease, where new surgical techniques are evaluated, and basic science research is carried out to advance understanding about the disease.

Vision Genetics Center

Initially established in 1978 as the UCLA Retinitis Pigmentosa Registry, the Vision Genetics Center, under the direction of Dr. Michael B. Gorin, is an integrated clinical and research program that addresses the full spectrum of hereditary eye disorders. Center members, representing multiple disciplines, combine their efforts to understand the underlying molecular basis of a broad range of ocular conditions, including those involving the development of the eye, cornea, lens, extracellular muscles, retina, vitreous, and optic nerve. Areas of interest include both simple inherited conditions caused by alterations in single genes, as well as conditions in which multiple genetic variations and other risk factors play a role.

The Center offers patients and their family members state-of-the-art diagnosis and care of the hereditary eye or vision condition. Services include genetic counseling, and when appropriate, DNA testing either as a clinical diagnostic service, a research program, or in combination. The Center’s faculty members collaborate with a number of genetic research groups around the world to ensure that patients can participate in the most advanced research for their particular condition.

Vision Proteomics Center

Genes encode the sequences of proteins, and knowledge of the structure and function of these proteins is required to unlock the secrets of the cell. That task is now set before current and future generations of scientists, and a new field of study, Proteomics, has been born. It is only through an understanding of protein function at the molecular level that researchers can learn the fundamental origins of disease and develop rational therapeutic designs to correct defects in the molecular machinery.

The Vision Proteomics Center at the Stein Eye Institute, under the direction of Dr. Wayne L. Hubbell, with researchers Drs. Ben J. Glasgow, Dean Bok, Joseph Horwitz, and Gabriel H. Travis, has pioneered the development of site-directed spin labeling—the only one of its kind in the world, ushering in a new era of exploration of structure/function relationships in proteins. Research groups at the Stein Eye Institute, departments at UCLA, and other major institutions throughout the United States and abroad, are taking advantage of the singular opportunities provided by the Vision Proteomics Center.

Vision Rehabilitation Center

The Vision Rehabilitation Center, under the direction of Dr. Melissa W. Chun with Dr. Steven D. Schwartz as medical advisor, was established to provide rehabilitation to maximize visual function and quality of life of patients with low vision, defined as best corrected vision of 20/70 or worse in the better eye. These outcomes are accomplished with a rehabilitation plan tailored to each patient’s specific needs and goals.

The Center provides assistance in the form of patient consultation and training, including reading and computer training, as well as evaluation with the latest low-vision devices that can help patients adapt to their visual restrictions. The Center utilizes a wide array of technologically advanced devices, such as magnifiers, telescopes, and digital and computer technology. Customized for each patient’s individual needs, services may range from simple solutions to specialized approaches. One unique feature of the Center is a special “lending library” of select low-vision devices that enables patients to try devices at home or in the office prior to purchase. When appropriate, referrals are provided to assist independent living through occupational therapy and orientation and mobility training.
Clinical Laboratories

The Ophthalmology Clinical Laboratories provide precise measurements, photographs, and quantitative studies of the eye and the visual system. Quantitative information of this type enhances patient care by increasing the accuracy of diagnosis and enlarging the parameters employed to assess the clinical course and effectiveness of treatment. Additionally, the clinical laboratories expand the scope of treatment alternatives, promote clinical research, and generally augment the effectiveness of ophthalmic disease management. The laboratories are available to all ophthalmologists in the community.

Corneal Diagnostic Laboratory

The Corneal Diagnostic Laboratory, under the direction of Dr. Anthony J. Aldave, offers a comprehensive array of corneal imaging modalities. Services include imaging of the anterior and posterior corneal surfaces with the Marco OPD-Scan III and Bausch and Lomb Orbscan topographers and the Ziemer GALILEI Dual Scheimpflug Analyzer, and imaging of the corneal endothelium for assessment of corneal endothelial cell morphology and density using the KONAN CellChek XL specular microscope. Full-thickness confocal microscopic imaging of the cornea, a useful tool in the diagnosis of suspected fungal, acanthamoebic, and other parasitic infections of the cornea, is performed with the Heidelberg HRT3 confocal microscope. This instrument can also perform optical pachymetry to non-invasively measure LASIK residual bed thicknesses and flap thicknesses as well as evaluate the LASIK interface for possible infections, diffuse lamellar keratitis, and ingrowth.

Glaucoma Photography Laboratory

The Glaucoma Photography Laboratory, under the direction of Dr. Joseph Caprioli, provides specialized photographs for new and follow-up patients to assist the ophthalmologist in the management of patients with glaucoma. The GDX Nerve Fiber Analyzer utilizes polarized light in place of dilatation to measure the thickness of the nerve fiber layer. This test is particularly useful in diagnosing new glaucoma. Heidelberg retinal tomography, using confocal laser light, measures additional parameters of the optic nerve and provides more information on the nerve fiber layer. Optical coherence tomography utilizes reflected light to measure the nerve fiber layer as well as to measure macular holes as a staging procedure for surgical repair. An ophthalmic fundus camera photographs the optic nerve in stereo. The Laboratory is conducting clinical studies to evaluate the effectiveness of each photographic modality in terms of predictive accuracy and early detection of glaucoma.

Ocular Motility Clinical and Basic Science Laboratory

The Ocular Motility Clinical and Basic Science Laboratory, under the direction of Dr. Joseph L. Demer, records and quantitatively analyzes eye movement abnormalities resulting from ocular and neurological disorders, such as ocular myasthenia gravis. Several types of tests are performed. The Hess test utilizes specialized eye charts and lenses to assist in the diagnosis of a number of problems, including double vision. Magnetic scleral search coil techniques are utilized in clinical research studies to detect fine movements not evident through normal visual examination. Another test involves the visual recording of eye movement using a video camera. The Laboratory also engages in basic science research to further understanding of eye movement, as well as diseases of the eye, brain, and muscles, and related tissues of the inner ear.

Ophthalmic Photography Clinical Laboratory

The Ophthalmic Photography Clinical Laboratory, under the direction of Dr. Tara A. McCannel, provides a wide array of photographic techniques important in patient care, research, and teaching. The primary purpose of ophthalmic photography in patient care is to record the present state of the eye, and in cases of abnormality, to establish a baseline and monitor the patient’s condition over time. Patient care services include photographic documentation of anterior segment diseases involving corneal problems like growths, infection, and trauma; photographs of ocular motility to record abnormalities in eye movement; fundus photography, which captures pictures of the retina; and diagnostic testing using fluorescein and indocyanine green angiography, which records the dynamics of blood flow in the eye. The Laboratory also supports the research and teaching activities of the Stein Eye Institute by preparing and duplicating graphic materials for presentation and publication.

Ophthalmic Ultrasonography Clinical Laboratory

The Ophthalmic Ultrasonography Clinical Laboratory, directed by Dr. Steven D. Schwartz, performs clinical examinations that are useful in diagnosing both ocular and orbital eye diseases. Diagnostic examinations include standardized A-scan, B-scan, and biomicroscopy. Standardized A-scan is useful in tissue differentiation and is commonly employed to diagnose ocular and orbital tumors, including choroidal melanoma. B-scan provides location and contour information and is particularly useful in differentiating vitreous membranes from retinal detachment. Ultrasound biomicroscopy provides exquisitely detailed, high-resolution views of the anterior segment of the eye and is a critical tool for the evaluation of ocular pathology, especially in opaque corneas.
Biometry and intraocular lens calculations are also performed in the Laboratory, under the direction of Dr. Ralph Levinson. Biometry measures the axial eye length, anterior chamber depth, and lens thickness; intraocular lens calculations are performed to determine the power of the lens implant for cataract patients.

Perimetry Laboratory

The Perimetry Laboratory, under the direction of Dr. Joseph Caprioli, performs visual field examinations that determine the sensitivity of central and peripheral vision. Examinations are conducted with advanced Humphrey automated perimetry equipment. Testing detects visual field deficits associated with certain kinds of eye diseases such as glaucoma, retinal disorders, and neuro-ophthalmic conditions. Utilizing pinpoints of light around a perimetry bowl, the test evaluates different areas of the field of vision. Test results are computerized and compared to a range of normal values by age group. Patterns of diminished fields of vision are related to specific eye diseases. Perimetry testing is employed for diagnostic purposes and to monitor visual field sensitivity over time, especially for glaucoma patients. Both standard and shortwave automated techniques are available, in addition to frequency-doubling perimetry and motion-detection perimetry.

Visual Physiology Clinical Laboratory

The Visual Physiology Clinical Laboratory, under the direction of Drs. Michael B. Gorin and Steven Nussinowitz, quantitatively evaluates the function of the retina and visual pathways. Patients are referred for functional testing to confirm a specific diagnosis, or in cases where the etiology is unknown, to rule out alternative diagnostic possibilities. Electrophysiological tests, including both the full-field and multifocal electroretinograms (ERG and mfERG), the electro-oculogram (EOG), and visually evoked cortical potentials (VECP), record electrical signals from different layers of the visual system to identify the site responsible for visual symptoms. Psychophysical tests require the participation of the patient in specific tasks to evaluate visual functions like color blindness, contrast sensitivity, and visual acuity. In many cases, both electrophysical and psychophysical tests are performed together to obtain the optimum amount of information for diagnosis.
Training Programs

The Stein Eye Institute and the UCLA Department of Ophthalmology jointly provide comprehensive training in ophthalmology and vision science to medical students, residents, and clinical and research fellows. The programs encompass the gamut of ophthalmic and vision science education, representing every level of training and incorporating a full range of subjects in the study of the eye. The residency program is rated one of the top in the country. A large patient population with diverse vision problems offers innumerable training opportunities for both residents and clinical fellows. The availability of more than 15 research laboratories ensures a wide choice of vision science projects for all trainees. Pre-doctoral and postdoctoral research fellows particularly benefit from the wealth of new and unfolding research generated by vision scientists at the Institute.

UCLA Medical Student Program

Each academic year, the UCLA Department of Ophthalmology and the Institute extend instruction to UCLA medical students in their second, third, and fourth years of instruction. Through lectures, small group discussions, and clinical experience, all students have numerous training sessions from which to gain knowledge about eye diseases and develop eye examination skills that should be known by all physicians, regardless of their specialties. Those students who are interested in ophthalmology as a career have additional learning opportunities in elective courses.

In their second year of instruction, all medical students attend a series of lectures covering various topics related to eye diseases distributed throughout their yearlong Human Biology and Disease course. Students also attend several afternoon workshops during which they learn eye examination skills and treatments for eye problems that can be managed by non-ophthalmologists. During their third year of instruction, medical students interested in additional training and experience can elect to spend two weeks of their surgical clerkship on the Ophthalmology Service, examining patients in clinic and observing eye surgeries. During the fourth year of instruction, a series of advanced clinical electives are available to medical students who plan eventually to practice ophthalmology as their specialty.

UCLA Medical Student Research Program

At the Stein Eye Institute, medical students have taken laboratory and clinical research electives for decades, however, there has been no formal program wherein a medical student could obtain salary and research support. The Medical Student Research Program allows select medical students to familiarize themselves with laboratory or clinical vision science research. Each year, a committee selects one or two medical student researchers to receive salary and research support for six to 12 months in the laboratory or clinical research area of the student’s mentor. The goal of the program is to encourage medical students to pursue careers in academic ophthalmology.

UCLA Ophthalmology Residency Program

The Department of Ophthalmology conducts an accredited three-year residency program for 24 residents; eight new residents begin training each July. The full breadth of ophthalmology training is offered, including experience in general ophthalmology and ophthalmic subspecialties. Training incorporates the resources of the UCLA Stein Eye Institute, Harbor-UCLA Medical Center, Olive View-UCLA Medical Center, and the Veterans Affairs Greater Los Angeles Healthcare System at West Los Angeles and Sepulveda. Every resident has exposure to each medical center during the course of training, thereby ensuring clinical experience with a wide range of problems and patient populations. Certification by the American Board of Ophthalmology is a natural objective of the program.

Clinical Rotations

Clinical rotations at the Stein Eye Institute include both general ophthalmology and subspecialties. In general, ophthalmology residents work as a team, handling clinics, emergencies, and walk-in patients. They also serve as an ophthalmology consult service for inpatients in the UCLA Medical Center. Residents assigned to subspecialty service rotations are provided with intensive exposure to the various divisions within the Department, working closely with faculty members in a private practice environment. At the UCLA-affiliated medical centers, residents work in teams that provide both general and subspecialty patient care.

Didactic Education

Residents receive didactic education in the classroom on an ongoing basis. Once each week, all residents attend a mandatory half-day program that includes faculty lectures that, over the course of the three-year program, cover each of the required subjects in the American Academy of Ophthalmology Basic and Clinical Sciences Course. These lectures are followed by Grand Rounds, which consist of presentation and discussion of specific patient cases, and faculty lectures on clinical topics related to ophthalmic subspecialties. Throughout the week, clinical conferences in ophthalmic subspecialties are held where problems are presented and discussed.

Surgery Training

Residents begin to perform surgery in their first year of training and continue to operate throughout their residency. Surgical cases are assigned commensurate with level of training and experience. First-year residents begin in the Institute’s Microsurgery Laboratory, an organized surgical course that includes computerized surgical
simulators. This facility is available to residents throughout their training. Residents first assist on selected surgical cases, and by the end of their residency, they are performing procedures independently.

Research
An understanding of and an appreciation for research are major prerequisites for assimilating future developments in ophthalmology. Accordingly, ophthalmic research is an integral component of residency training. Residents are expected to undertake independent investigation or to participate in ongoing clinical or basic science research projects in ophthalmology. Residents present the results of their work at the Stein Eye Institute Clinical and Research Seminar during their second and third years of residency. They are also encouraged to report their studies at regional and national meetings and publish their results in scientific journals. Residents with special clinical or research interests have an opportunity to use elective time to increase their exposure to a particular area of ophthalmology. This time can be spent with full-time or volunteer faculty at UCLA or at other institutions.

EyeSTAR Program
For physicians who are interested in academic careers and professional leadership as clinician-scientists, the Stein Eye Institute offers an Ophthalmology Specialty Training and Advanced Research Program, referred to as EyeSTAR, which offers vision science training combined with an ophthalmology residency. Appointees complete a residency program leading to certification in ophthalmology, as well as laboratory research experience leading to a doctorate, or postdoctoral training in the event that the trainee already has a doctorate. EyeSTAR trainees work under the guidance of a faculty advisory panel representing the trainee’s clinical and research interests.

The unique program began in 1995 and is geared to physicians committed to academic careers in ophthalmology, combining basic science with clinical practice in a five-year or six-year curriculum. EyeSTAR graduates are trained to compete not just with clinical scientists but also with top basic scientists from all institutions. Trainees select their faculty mentors from the Vision Research Division of the Stein Eye Institute or from the David Geffen School of Medicine at UCLA, College of Letters and Sciences, School of Public Health, Clinical Scholars Program, and RAND Graduate School.

EyeSTAR is recognized by the National Eye Institute and the Association of University Professors of Ophthalmology as a model training program for clinician-scientists in ophthalmology.

UCLA Clinical Ophthalmology and Vision Science Fellowship Programs
The Stein Eye Institute offers particularly well-qualified persons the opportunity to receive fellowship training in specific areas of clinical ophthalmology or vision science research.

Following successful completion of a residency program, a clinical fellowship combines outpatient, inpatient, and surgical experience in an ophthalmic subspecialty. The clinical fellow assumes increasing responsibility for patient care under the supervision of faculty members responsible for the program. In addition to receiving training from faculty, the fellow instructs medical students and residents. Research is considered an important aspect of specialty training and a major prerequisite for assimilating future developments in ophthalmology. Clinical fellows are expected to undertake independent investigation or to participate in one of the ongoing research projects in a field related to their specialty.

Vision science fellowship training is laboratory based and offers both predoctoral and postdoctoral opportunities to trainees in specific areas of vision science that encompass a wide range of topics. Trainees work under the supervision of Institute faculty members who are engaged in basic science research and have active laboratories. The scope and nature of the training program for each predoctoral or postdoctoral fellow is developed by the trainee and his/her faculty mentor.

Fellowship in Cornea–External Ocular Diseases and Refractive Surgery
Under the direction of Drs. Anthony J. Aldave, Sophie X. Deng, David Rex Hamilton, Kevin Miller, Bartly J. Mondino, and Rosalind Vo, one-year fellowships are offered in the study of diseases of the cornea, external eye, anterior segment, and refractive surgery. Clinical experience consists of participation in the cornea faculty practices, including surgery, and in the care of emergency cornea cases at the Stein Eye Institute. Fellows work in the microsurgical laboratory, and assist in teaching microsurgical skills to ophthalmology residents. Under the direction of faculty, they also perform primary surgical procedures in the UCLA Laser Refractive Center. In addition to in-depth training at the Institute, fellows provide medical and surgical care to patients at the Veterans Affairs Greater Los Angeles Healthcare System at West Los Angeles and Sepulveda and at Harbor-UCLA Medical Center. Fellows typically complete an original clinical or laboratory research project, and frequently co-author a book chapter or review during their training.

Fellowship in Glaucoma
Under the direction of Drs. Joseph Caprioli, Anne L. Coleman, JoAnn A. Giaconi, Simon K. Law, and Kouros Nouri-Mahdavi, the one-year or two-year glaucoma fellowship provides clinical and laboratory experience in glaucoma diagnosis and management. Fellows gain clinical experience by examining patients in the consultation suite and participating in the clinical and surgical management of patients. Fellows work in the Glaucoma Microsurgical Laboratory, participate in microsurgery courses, assist in the Glaucoma Clinic, and develop expertise in the various...
diagnostic techniques used in glaucoma treatment through preceptor-type relationships with faculty. Fellows participate in glaucoma teaching at the Stein Eye Institute and affiliated institutions, present cases at teaching rounds, and prepare presentations for regularly scheduled glaucoma conferences. Fellows also undertake at least one research project, which may be a clinical study or an applied research project in the laboratory, in cooperation with the faculty advisor.

Fellowship in Medical Retina and Genetics

This one-year fellowship, under the directorship of Dr. Michael B. Gorin, provides clinical knowledge pertaining to the diagnosis and management of a broad array of retinal disorders, including age-related macular degeneration, diabetic retinopathy, retinal vascular disease, inflammatory retinopathies, drug-related toxic retinopathies, and retinal and macular degenerations and dystrophies. Fellows are instructed in the proper use and interpretation of noninvasive diagnostic tools, and training includes genetic counseling and the proper use of molecular genetic diagnostics. Fellows will gain experience with a diverse set of interventional skills, including a wide spectrum of retinal laser procedures and pericocular and intravitreal injection of various classes of drugs.

Fellows divide their time among the clinical practices of Drs. Gorin, David Sarraf, and Colin A. McCannel within the Division of Retinal Disorders and Ophthalmic Genetics as well as in the Retinal Diagnostics Unit and the Visual Physiology Laboratory directed by Dr. Steven Nusinowitz at UCLA. Dr. McCannel's clinic provides exposure to surgical retinal decision-making and management issues. The fellows also provide care and teach residents in retina subspecialty clinics at two UCLA-affiliated hospitals. Fellows are strongly encouraged to engage in translational clinical research and/or clinical trials and descriptive retrospective studies and develop an in-depth working knowledge of the current scientific literature of medical and genetic retina. They are expected to participate in genetic and imaging conferences as well as other relevant meetings.

Fellowship in Neuro-Ophthalmology

The one-year fellowship in neuro-ophthalmology, under the direction of Dr. Anthony C. Arnold, involves a close preceptor-preceptee relationship, participation in teaching rounds, and work in the private consultation suite. The David Geffen School of Medicine at UCLA maintains major clinical and research programs in neurology, neurosurgery, and neuroradiology. Fellows attend the weekly Neurology and Neurosurgery Grand Rounds, take an active part in seeing relevant inpatient consultations throughout the Medical Center, and assist in selected surgical procedures of interest to neuro-ophthalmologists. Attendance at the weekly neuro-radiology teaching conferences is encouraged. Time is allotted for scientific reading and for research activities. Participation in clinical research, such as studies of eye movement disorders and disturbances of visual pathways, is expected.

Fellowship in Ophthalmic Pathology

Under the direction of Dr. Ben J. Glasgow, this fellowship provides preparation for an academic career in ophthalmic pathology. One-year, two-year, and three-year training programs are available depending on the background of the applicant. Training encompasses many aspects of ophthalmic pathology. Fellows may choose between a research or clinical-based curriculum. Clinical fellows gain expertise in surgical pathology; autopsy pathology; cytology, including fine-needle aspiration; electron microscopy; immunohistochemistry; DNA in situ hybridization; Southern blot analysis; and polymerase chain reaction techniques for diagnostic work. The fellowship programs are individualized according to the credentials and capabilities of each fellow.

Fellowship in Orbital and Ophthalmic Plastic Surgery

Fellowships in orbital and ophthalmic plastic surgery, under the overall supervision of Drs. Robert Alan Goldberg, Jonathan Hoenig, and Norman Shorr, provide training for ophthalmologists who are interested in specializing in orbital and adnexal disorders, and in aesthetic and reconstructive orbitofacial surgery. The fellowship program is approved by the American Society of Ophthalmic Plastic and Reconstructive Surgery and the American Academy of Cosmetic Surgery. Fellows participate in orbital and ophthalmic plastic surgery outpatient consultation, inpatient care, and surgical procedures at the Stein Eye Institute and affiliated hospitals. They also participate extensively in the continuing education and research activities of the Orbital and Ophthalmic Plastic Surgery Division. In addition to publishing results of original research in peer-reviewed scientific journals, fellows complete a formal thesis that partially satisfies the membership requirements of the American Society of Ophthalmic Plastic and Reconstructive Surgery. International research fellows also participate in the program annually.

Fellowship in Pediatric Ophthalmology and Strabismus

The division of Pediatric Ophthalmology and Strabismus offers one-year fellowships, under the directorship of Drs. Sherwin J. Isenberg and Joseph L. Demer. Clinical experience consists of supervised participation in the ophthalmic care of pediatric patients seen at the Stein Eye Institute, Harbor-UCLA Medical Center, and Olive View-UCLA Medical Center. Specific activities include participation in University Ophthalmology Associates, the Nursery and Neonatal Intensive Care Units, Ophthalmic Plastic and Reconstructive Surgery Service, and the Pediatric Retinal Service. Other activities in pediatric ophthalmology include experience in the private consultation suites and participation in pediatric cases that are handled through other services. Fellows
may collaborate with vision scientists, including biochemists, physiologists, pathologists, and anatomists, on research projects of mutual interest.

Fellowship in Uveitis and Inflammatory Eye Diseases

This one-year fellowship, under the direction of Dr. Gary N. Holland, offers comprehensive training in the evaluation and management of uveitis and other inflammatory eye diseases. Fellows participate in the practices of Drs. Holland and Ralph D. Levinson at the Stein Eye Institute and see patients in the Uveitis Clinic at the Harbor–UCLA Medical Center. They assist with diagnostic evaluations, emergency cases, management of immunomodulatory therapies, and perioperative care of patients undergoing surgical procedures. Fellows also interact closely with members of other clinical services who are involved in the care of patients with inflammatory eye diseases and related conditions (i.e., Retina, Glaucoma, Cornea, and Pediatric Ophthalmology Services; Adult and Pediatric Rheumatology Services; Infectious Disease Service).

Research is an integral part of the fellowship program. Fellows may become involved in patient-based or laboratory-based projects, including special research programs in the Ocular Inflammatory Disease Center and collaborations with investigators at other institutions. Fellows typically complete and publish one or two original research articles and frequently prepare a book chapter or review on a subject of interest. Fellows typically present their research results at national academic meetings. Support is provided for fellows to participate in the activities of related subspecialty organizations, such as the annual meetings of the American Uveitis Society.

Fellowship in Vitreoretinal Diseases and Surgery

Under the co-directorship of Drs. Allan E. Kreiger and Steven D. Schwartz, the Vitreoretinal Diseases and Surgery Fellowship in the Department of Ophthalmology at the Stein Eye Institute is a two-year program designed to provide medical and surgical training and clinical and vision science research opportunities related to vitreoretinal disease. Major components of the fellowship relate to diabetic retinopathy, diseases of the macula and retina, hereditary retinal degenerations, ocular trauma, ophthalmic oncology, rhegmatogenous retinal disease, vitreoretinal surgery, pediatric retinal disease, and diagnostic imaging. Clinical training includes the prevention, diagnosis, and treatment of retinal, choroidal, vitreous, and related ocular disease. Fellows participate in retinal clinics and surgical procedures at the Stein Eye Institute and affiliated hospitals. Clinical, laboratory, or translational research is encouraged. Other activities include teaching of vitreoretinal diseases at the Stein Eye Institute and affiliated institutions and case presentations at teaching sessions. The program also includes the participation of several international fellows.

Fellowship in Vision Science

Predoctoral and postdoctoral fellowships in vision science are offered to individuals who have an interest in specific research areas being pursued by Institute faculty in highly specialized laboratory environments. These fellowships are supported either by individual funds available to Institute professors or as part of a special program offered under the auspices of a National Eye Institute Vision Science Training Grant and directed by Dr. Gabriel H. Travis.

Predoctoral fellows take a defined program of core courses and carry out eye-related research, obtaining doctorates in about six years. Fellows are required to present their research at informal and formal seminars, and are encouraged to participate in national and international meetings and publish scientific papers. They gain a broad background in the vision sciences by interacting with members of adjacent laboratories and collaborating with faculty members other than their own preceptors. Postdoctoral research fellowships are offered for one to three years. Each one is unique with research programs established according to mutual agreement between trainees and mentors. Research areas for postdoctoral fellows include molecular biology, genetics, biophysics, biomechanics, cell biology, eye development, and biochemistry. Upon completion of their fellowships, trainees usually pursue careers in academia or industry.

International Fellowship and Exchange Program

To promote and encourage research and education interaction with ophthalmology institutions throughout the world, the Stein Eye Institute offers an International Ophthalmology Fellowship and Exchange Program consisting of one-year to two-year fellowships under the supervision of specific Institute faculty. Candidates for these fellowships are nominated by prestigious institutions outside the United States, and often hold academic positions within their own countries. Fellows participate in the clinical and research activities of ophthalmic subspecialties according to their training needs.
Volunteer and Consulting Faculty

Volunteer Faculty in Ophthalmology

Clinical Professors of Ophthalmology

Henry I. Baylis, MD
Founding Chief of the Orbital and Ophthalmic Plastic Surgery Division

Bruce B. Becker, MD
Michael S. Berlin, MD
J. Bronwyn Bateman, MD
William P. Chen, MD
Leland M. Garrison, MD
John D. Hofbauer, MD
Kenneth J. Hoffer, MD
C. Richard Hulquist, MD
Barry M. Kerman, MD
Roger A. Kohn, MD
Benjamin C. Kwan, MD
Ezra Maguen, MD
Robert K. Krauss, MD
Benjamin C. Kwan, MD
Ezra Maguen, MD

Associate Clinical Professors of Ophthalmology

Kevin J. Belville, MD
W. Benton Boone, MD
Harvey Brown, MD
Andrew E. Choy, MD
Melissa W. Chun, OD
Peter J. Cornell, MD
Uday Devgan, MD

Chief of Ophthalmology

Olive-View UCLA Medical Center

Paul B. Donzis, MD
David R. Fett, MD
Donald S. Fong, MD, MPH
Donald I. Goldstein, MD
Michael J. Groth, MD
Thomas A. Hanscom, MD
Andrew Henrik, MD
Edwin P. Hill, MD
Batool Jafri, MD
David F. Kamin, MD
Brian L. Lee, MD
Jonathan I. Macy, MD
Joan E. McFarland, MD
John F. Paschal, MD
George M. Rajacich, MD
Michael Reynard, MD
David S. Robin, MD
David E. Saver, MD
Timothy V. Scott, MD
Albert Sheffer, MD
James D. Shuler, MD
Yossi Sidikaro, MD, PhD
Matthew Sloan, MD
Ronald J. Smith, MD
Alfred Solish, MD
Kenneth D. Steinsapir, MD
William C. Stivelman, MD
Hector L. Sulit, MD
Kamal A. Zakka, MD

Assistant Clinical Professors of Ophthalmology

David H. Aizu, MD
Malvin B. Anders, MD
Richard K. Apt, MD
Reginald G. Aran, MD, PhD
Arthur A. Astorino, MD
John D. Bartlett, MD
Mark A. Baskin, MD
Arthur Benjamin, MD
Katherine L. Bergwerk, MD
Betsy E. Blechman, MD
Cynthia A. Boxrud, MD
Amarpreet S. Brar, MD
Almira W. Cann, MD, PhD
Arnett Carraby, MD
Vicki K. Chan, MD
Andrew M. Chang, MD
Candice Chen, MD
Thomas B-H. Choi, MD
Milton W. Chu, MD
Robert A. Clark, MD
Charles A. Cooper, MD
Yadvinder P. Dang, MD
Jonathan M. Davidoff, MD
John L. Davidson, MD
Sanford S. Davidson, MD
Louise Cooley Davis, MD
Farid Eghbali, OD
Troy R. Elander, MD
Naomi L. Ellenhorn, MD
Calvin T. Eng, MD
Robert E. Engstrom, MD
Doreen T. Fazio, MD
Sanford G. Feldman, MD
Laura E. Fox, MD
Ronald P. Gallimore, MD
George H. Garcia, MD
Kathryn M. Gardner, MD
Leslie C. Garland, MD
W. James Gealy, Jr., MD
Damien Goldberg, MD
Richard Havunjian, MD
Man M. Singh Hayreh, MD
Matthew L. Hecht, MD
Jonathan A. Hoenig, MD
Jeffrey Hong, MD
Catherine J. Hwang, MD, MPH
Morton P. Israel, MD
Steven J. Jacobson, MD
Véronique H. Jotterand, MD
J. David Karlin, MD
David S. Katzin, MD
Jerome R. Klein, MD
Craig H. Kligcr, MD
Steven Leibowitz, MD
Robert T. Lin, MD
Joanne E. Low, MD
Bryant J. Lum, MD
Michael C. Lynch, MD
M. Polly McKinstry, MD
Ashish M. Mehta, MD
David R. Milstein, MD
Assistant Clinical Professors of Ophthalmology continued

Ronald L. Morton, MD
Roger L. Novack, MD, PhD
Alpa A.S. Patel, MD
James H. Peace, MD
Cheryl J. Powell, MD
Firas Rahhal, MD
Laurence N. Roer, MD
Barry S. Seibel, MD
Meryl Shapiro-Tuchin, MD
Amelia Sheh, MD
David M. Shultz, MD
Eliot B. Siegel, MD
Lance M. Siegel, MD
John D. Slaney, MD
Robert J. Smyth, MD
Kenneth O. Sparks, MD
Sadiqa Stelzner, MD
Mehryar “Ray” Taban, MD, FACS
Robert C. Tarter, MD
Debra G. Tennen, MD
Teddy Y. Tong, MD
Henry E. Ullman, MD
Sidney J. Weiss, MD
Scott Whitcup, MD
Jeffrey V. Winston, MD
David L. Wirta, MD
Barry J. Wolstan, MD
Wilson C. Wu, MD, PhD
Michael C. Yang, MD
Patrick C. Yeh, MD
Richard H. Yook, MD
Peter D. Zeegen, MD

Clinical Instructors in Ophthalmology

Gavin G. Bahadur, MD
Eduardo Besser, MD
Maria Braun, MD
Neil D. Brouman, MD
Stephen S. Bylsma, MD
Andrew Caster, MD
Joseph H. Chang, MD
Hajir Dadgostar, MD
Paul J. Dougherty, MD
Sean Dumars, MD
Daniel Ebroon, MD
Brad S. Elkins, MD
Satvinder Gujral, MD
Lawrence M. Hopp, MD, MS
Aarchan Joshi, MD
Anisha J. Judge, MD
Rajesh Khanna, MD
Julie A. King, MD
Mark H. Kramar, MD
Daniel Krivoy, MD
Laurie C. McCall, MD
David Paikal, MD
Jayantkumar Patel, MD
Susan S. Ransome, MD
Steven H. Rauchman, MD
Richard H. Roe, MD
Aaron Savar, MD
Kayar Shah, MD
Mark Silverberg, MD
Abraham Soroudi, MD
Sharon N. Spooner-Dailey, MD
Homayoun Tabandeh, MD
Dana P. Tannenbaum, MD
William L. Trotter, MD
Mathew Wang, MD
Peter H. Win, MD

Consulting Members of the Stein Eye Institute

Robert W. Baloh, MD
Professor of Neurology and Surgery
(Head and Neck)
Ferdinand V. Coroniti, PhD
Professor, Department of Physics and Astronomy
David Eisenberg, DPhil
Investigator, Howard Hughes Medical Institute
Director, UCLA-DOE Institute for Genomics and Proteomics
Professor, Departments of Chemistry and Biochemistry, and Biological Chemistry
Molecular Biology Institute
Alan M. Fogelman, MD
Castera Professor and Executive Chair, Department of Medicine
Alan D. Grinnell, PhD
Professor of Physiology and Physiological Science
Director, Jerry Lewis Neuromuscular Research Center
Director, Ahmanson Laboratory of Neurobiology
Sherman M. Mellinkoff, MD
Professor Emeritus of Medicine
Former Dean, UCLA School of Medicine
C. Kumar Patel, PhD
Professor, Department of Physics and Astronomy
Leonard H. Rome, PhD
Senior Associate Dean for Research
Professor of Biological Chemistry
Peter C. Whybrow, MD
Judson Braun Professor and Executive Chair, Department of Psychiatry and Biobehavioral Sciences
Director, Neuropsychiatric Institute
Physician in Chief, Neuropsychiatric Hospital
Residents and Fellows

Residents

Third-Year Residents 2011–2014
Meena George, MD
Anthony Joseph, MD
Tina Ku, MD
Robert Kule, MD
Christine Lin, MD
C. Nathaniel Roybal, MD, PhD (EyeSTAR)
Anitra Thomas, MD
Dong Dawn Yang, MD

Second-Year Residents 2012–2015
Jamie K. Alexander, MD
Melinda Y. Chang, MD
Robert A. Lalane, MD
Wenjing Liu, MD
Aaron Nagiel, MD, PhD
Lina Rodriguez, MD
P. James Sanchez, MD

First-Year Residents 2013–2016
Jenny Chen, MD
Xiejing Chen, MD
Diana Katsman, MD, PhD (EyeSTAR)
Wonchon Liu, MD
Grant Moore, MD
Mitra Nejad, MD
Christian Sanfilippo, MD
Mauricio E. Vargas, MD, PhD (EyeSTAR)

EyeSTAR Trainees
Diana Katsman, MD, PhD
C. Nathaniel Roybal, MD, PhD
Victoria Tseng, MD
Mauricio E. Vargas, MD, PhD

Clinical Fellows

Corneal and External Ocular Diseases and Refractive Surgery
Ryan St. Clair, MD
Rosalind Vo, MD

Glaucoma
Renu Jivrajka, MD
Alena Reznik, MD

Medical Retina and Ophthalmic Genetics
Saradha Iragavarapu, MD

Orbital and Ophthalmic Plastic Surgery
Payam Morgan, MD
Daniel Rootman, MD, MSc

Pediatric Ophthalmology and Strabismus
Erica Oltra, MD
Anika Tandon, MD

Uveitis and Inflammatory Eye Disease
None

Vitreoretinal Diseases and Surgery
David Cupp, MD
Sujit Itty, MD
Joshua Udoetuk, MD
Ryan Wong, MD

International Fellows

Cornea Research
None

Comprehensive Ophthalmology/ Cataract
Carlos Manuel Nicoli, MD, Argentina

Glaucoma
John Mark de Leon, MD, Philippines
Eun Ah Kim, MD, South Korea
Ji Woong Lee, MD, South Korea
Sara Nowroozizadeh, MD, Iran
Francisco Otárola Mérino, MD, Chile

Orbital and Ophthalmic Plastic Surgery
Aline Pimentel de Miranda, MD, Brazil

Pediatric Ophthalmology
Bhambi Gesite-de Leon, MD, Philippines
Sun Young Shin, MD, South Korea
Soh Youn Suh, MD, South Korea

Pathology (Eye)
None

Uveitis
Christian Böni, MD, Switzerland

Visual Physiology
None

Vitreoretinal Diseases and Surgery
Hamid Hosseini, MD, Iran
Maria Silvana Pellice, MD, Argentina
Tatsuhiro Sato, MD, Japan
Po-Chen Tseng, MD, Hong Kong

Postdoctoral Research Fellows

Navid Amini, PhD
Doug Chung, PhD
Jeremy Cook, PhD
Matthias Elgeti, PhD
Julian Esteve-Rudd, PhD
Sheyla Gonzalez-Garrido, PhD
Lei Gu, PhD
Sonia Guha, PhD
Mei Jiang, PhD
Justyna Kanska, PhD
Vanda Lopes, PhD
Carlos Lopez, PhD
Hua Mei, PhD
Johan Pahlberg, PhD
Yu “Christie” Qin, PhD
Shanta Sarfare, PhD
Kwang Sup “Andrew” Shin, PhD
Kaushali Thakore-Shah, PhD
Stefanie Volland, PhD
Hongxing Wang, PhD
Yanjie Wang, PhD
Zhongyu Yang, PhD
Jang “Lawrence” Yoo, PhD

Predoctoral Research Fellows

Guo Cheng
Austin Dean
Jun Deng
Katherine Fehlhaber
Roni Hazim
Yifeng Ke
Jun Isobe
Alan Le
Michael Lerch
Yingqian Peng
Allison Sargoy
Wei Wang
Binbin Xie
Educational Offerings

Ophthalmology and Vision Science Training Programs

Ophthalmology Basic and Clinical Science Course
Course Chairman: Bartly J. Mondino, MD

This course is a major segment of the educational program for ophthalmology residents, as well as a review course for ophthalmologists. Sections are presented each year in a rotation designed to provide complete review of all sections in a three-year period. First-year residents participate in a more intensive curriculum in order to obtain a comprehensive foundation of ophthalmologic knowledge. In 2013–2014, the following course components were offered:

- Fundamentals and Principles of Ophthalmology
 Joseph L. Demer, MD, PhD
 August 21, 2013–September 25, 2013

- Glaucoma
 Joseph Caprioli, MD
 October 2, 2013–November 6, 2013

- External Disease/Cornea
 Anthony J. Aldave, MD
 November 27, 2013–January 22, 2014

- Pathology
 Ben J. Glasgow, MD
 January 29, 2014–March 5, 2014

- Orbit, Eyelids, and Lacrimal System
 Robert Alan Goldberg, MD
 March 19, 2014–April 23, 2014

- Lens/Cataract
 Kevin M. Miller, MD
 April 30, 2014–June 1, 2014

- Ophthalmology Clinical Conferences
 Coordinators:
 Anthony C. Arnold, MD
 Gary N. Holland, MD

 The Clinical Conferences are offered in conjunction with the regular weekly Ophthalmology Basic and Clinical Science Course. These conferences review patient care activities of the UCLA Department of Ophthalmology, present general topics in ophthalmic science, and promote discussion of relevant aspects of ophthalmic pathology and pharmacy.

- Study Groups
 Focusing on specific topics in clinical ophthalmology, study groups meet regularly under the leadership of faculty members who are acknowledged specialists in their respective fields. The study groups are an integral part of the residency and clinical fellowship programs and serve as an informal resource for practicing ophthalmologists in the community.

- Retinal Imaging Conference
 Arranged by the clinical fellows in vitreoretinal studies, this conference convenes periodically to review current angiograms representing disease entities, unusual abnormalities, and controversial interpretations of angiographic findings. Steven D. Schwartz, MD, and other members of the Retina Division, supervise the conference.

- Glaucoma Weekly Conference
 This conference is designed to teach residents and fellows a basic understanding of the pathophysiology and clinical care of glaucoma. Faculty, fellows, and residents all participate in case and subject presentations and discussions. The conferences are coordinated by Joseph Caprioli, MD.

- Neuro-Ophthalmology Conference
 This conference meets bimonthly and includes full-time and volunteer clinical faculty and visitors from the community who discuss neuro-ophthalmology cases presented by fellows and residents. The coordinator for the year was Anthony C. Arnold, MD.

- Oculoplastics Conference
 Faculty and residents meet daily to review pathological findings from current ophthalmology cases. The coordinator for the year was Ben J. Glasgow, MD.

- Ophthalmic Pathology Conference
 Faculty and residents meet daily to review pathological findings from current ophthalmology cases. The coordinator for the year was Ben J. Glasgow, MD.

- Pediatric Ophthalmology and Strabismus Conference
 At monthly meetings rotating among Harbor-UCLA Medical Center, Olive View-UCLA Medical Center, and the Stein Eye Institute, difficult pediatric ophthalmology and strabismus cases are presented and discussed. These conferences were coordinated for the year by Sherwin J. Isenberg, MD, at Harbor-UCLA Medical Center, Federico Velez, MD, at Olive View-UCLA Medical Center, and Joseph L. Demer, MD, PhD, at the Stein Eye Institute.

- Pediatric Rheumatology and Uveitis Conference
 Members of the Uveitis Service meet each week with members of the Rheumatology Service from the Department of Pediatrics to discuss patient-care issues and research topics of mutual interest. The conference is attended by faculty, clinical fellows from the Departments of Ophthalmology and Pediatrics, and research staff. The conference is coordinated by Gary N. Holland, MD.
Vision Science Seminar Series

Coordinators:
Sophie X. Deng, MD, PhD
David S. Williams, PhD

This seminar series, conducted throughout the academic year, allows faculty within the Stein Eye Institute to present their research to other members of the Institute, thereby fostering the exchange of knowledge and cooperation. The series frequently includes presentations by eminent visitors to the UCLA campus.

Continuing Education Programs

Aesthetic Eyelid and Facial Rejuvenation Course
July 19–20, 2013

Coordinators:
Henry I. Baylis, MD
Robert Alan Goldberg, MD
Jonathan A. Hoenig, MD
Catherine J. Hwang, MD
Norman Shorr, MD

The Orbital and Oculoplastic Surgery Division held its annual Aesthetic Eyelid and Facial Rejuvenation course at the Stein Eye Institute. The event attracted ophthalmologists, dermatologists, and cosmetic surgeons from around the world. The two-day event combined surgical demonstrations, a cadaver dissection, and didactic lectures that informed participants of the latest advances in the field of aesthetic and reconstructive surgery for the eyelids and face.

Optometric Symposium on Advances in Eye Care
January 26, 2014

Chairman:
Melissa Chun, OD

Optometrists from across California traveled to the Stein Eye Institute to attend the 16th Annual Stein Eye Institute and Marshall B. Ketchum University joint Optometric Symposium on Advances in Eye Care. The course included lectures given by featured speakers.

Master’s Orbital Surgery Symposium
February 7–8, 2014

Coordinators:
Robert Alan Goldberg, MD
Jack Rootman, MD
Norman Shorr, MD

The Orbital and Ophthalmic Plastic Surgery Division hosted a two-day Master’s Symposium on Orbital Surgery that included a laboratory session of cadaver dissection, didactic lectures, and case presentations. The course brought more than 60 participants from across the world.

Comprehensive Ophthalmology Review Course
February 20–23, 2014

Course Directors:
Sherwin Isenberg, MD
John Irvine, MD

The Stein Eye Institute and the Doheny Eye Institute sponsored the Eighth Annual Comprehensive Ophthalmology Review Course. Developed to serve ophthalmology-training programs in Southern California, the program concentrated on the epidemiology, clinical presentation, diagnosis, and management of ophthalmological disease.

Pediatric Division Meeting to Comemorate Dr. Leonard Apt
April 1, 2014

Course Director:
Joseph L. Demer, MD, PhD

The Stein Eye Institute Pediatric Division organized and hosted this full-day meeting commemorating the late Leonard Apt, MD, a founding member of the Institute and the first physician to become board certified in both pediatrics and ophthalmology. More than 40 invited speakers presented timely or controversial material on issues related to pediatric ophthalmology.

45th Jules Stein Lecturer
Steven E. Feldon, MD, MBA
Director, Flaum Eye Institute
Professor and Chairman
Department of Ophthalmology
University of Rochester
Rochester, NY

12th Bradley R. Straatsma Lecturer
Lois E. H. Smith, MD, PhD
Professor of Ophthalmology
Harvard Medical School
Clinician/Scientist
Children’s Hospital
Boston, MA

12th Thomas H. Pettit Lecturer
Amani A. Fawzi, MD
Associate Professor of Ophthalmology
Northwestern University
Chicago, IL
Research Contracts and Grants

July 1, 2013–June 30, 2014

<table>
<thead>
<tr>
<th>Vision Science Grants</th>
<th>Total Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthony J. Aldave, MD</td>
<td></td>
</tr>
<tr>
<td>Identification and Characterization of the Genetic Basis of PPCD</td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
</tr>
<tr>
<td>Duration: 12/1/12–11/30/17</td>
<td>$245,000</td>
</tr>
<tr>
<td>Dean Bok, PhD</td>
<td></td>
</tr>
<tr>
<td>Identification and Cellular Localization of Gene Products that Affect</td>
<td></td>
</tr>
<tr>
<td>Photoreceptor Survival in Inherited Retinal Degeneration</td>
<td></td>
</tr>
<tr>
<td>Macula Vision Research Foundation</td>
<td></td>
</tr>
<tr>
<td>Duration: 4/1/08–3/31/15</td>
<td>$50,000</td>
</tr>
<tr>
<td>Joseph Caprioli, MD</td>
<td></td>
</tr>
<tr>
<td>Multi-Center Study for Normal Database of Optic Nerve</td>
<td></td>
</tr>
<tr>
<td>Head, Retinal Nerve Fiber Layer, and Macula Parameters with the</td>
<td></td>
</tr>
<tr>
<td>Heidelberg Spectralis OCT</td>
<td></td>
</tr>
<tr>
<td>Heidelberg Engineering</td>
<td></td>
</tr>
<tr>
<td>Duration: 9/25/13–9/24/15</td>
<td>$23,500</td>
</tr>
<tr>
<td>Anne L. Coleman, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Immune Response Gene Polymorphisms and AMD:</td>
<td></td>
</tr>
<tr>
<td>Examining HLA-KIR Epistasis</td>
<td></td>
</tr>
<tr>
<td>California Pacific Medical Center Research Institute</td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/13–6/30/14</td>
<td>$27,482</td>
</tr>
<tr>
<td>UCLA Mobile Eye Clinic Child Vision Program</td>
<td></td>
</tr>
<tr>
<td>LA County Children and Families First (First 5 LA)</td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/13–6/30/15</td>
<td>$649,500</td>
</tr>
<tr>
<td>Center For Community Outreach, Jules Stein Eye Institute at UCLA 2013–2014</td>
<td></td>
</tr>
<tr>
<td>The Nicholas Endowment</td>
<td></td>
</tr>
<tr>
<td>Duration: 1/1/14–12/31/14</td>
<td>$100,000</td>
</tr>
<tr>
<td>Joseph L. Demer, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Biomechanical Analysis in Strabismus Surgery</td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
</tr>
<tr>
<td>Duration: 5/1/14–4/30/16</td>
<td>$359,383</td>
</tr>
<tr>
<td>Training Mentors in Developing Countries Pediatric Ophthalmology Fellowship</td>
<td></td>
</tr>
<tr>
<td>(Bambhi Uellyn Gesite-de Leon, MD, Fellow)</td>
<td></td>
</tr>
<tr>
<td>Knights Templar Eye Foundation Inc.</td>
<td></td>
</tr>
<tr>
<td>Duration: 7/1/13–6/30/14</td>
<td>$60,000</td>
</tr>
<tr>
<td>Sophie X. Deng, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>Ex Vivo Expansion of Human Limbal Stem Cells for Transplantation</td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
</tr>
<tr>
<td>Duration: 9/1/12–8/31/17</td>
<td>$237,500</td>
</tr>
<tr>
<td>Gary N. Holland, MD</td>
<td></td>
</tr>
<tr>
<td>Multicenter Uveitis Steroid Treatment (MUST) Trial</td>
<td></td>
</tr>
<tr>
<td>National Eye Institute</td>
<td></td>
</tr>
<tr>
<td>Duration: 6/1/12–4/30/15</td>
<td>$23,000</td>
</tr>
</tbody>
</table>
Joseph Horwitz, PhD
Analysis of Lens Crystallins and Cataractous Mutants at High Hydrostatic Pressure
National Eye Institute
Duration: 4/1/14–3/31/19 $150,000

Wayne L. Hubbell, PhD
Molecular Basis of Membrane Excitation
National Eye Institute
Duration: 5/1/10–4/30/15 $336,220

Core Grant for Vision Research at the Jules Stein Eye Institute
National Eye Institute
Duration: 3/1/10–2/28/15 $340,177

Molecular Basis of Selective P450 3A Function
University of San Diego
Duration: 3/1/11–2/28/14 $26,673

Bartly J. Mondino, MD
RPB Unrestricted Grant
Research to Prevent Blindness, Inc.
Duration: 1/1/12–12/31/14 $110,000

Kouros Nouri-Mahdavi, MD
Detection of Glaucoma Progression with Macular OCT Imaging
National Eye Institute
Duration: 7/1/12–6/30/17 $212,166

Stacy L. Pineles, MD
Binocular Summation in Strabismus
NIH/National Eye Institute
Duration: 9/01/11–8/31/16 $200,237

Integrating Perceptual Learning Approaches into Effective Therapies for Low Vision
University of California Riverside
Duration: 9/1/13–7/31/15 $25,837

Natik I. Piri, PhD
The Neuroprotective Effect of HSP72 Induction in Experimental Glaucoma
National Eye Institute
Duration: 9/30/09–8/31/14 $158,004

Roxana Radu, PhD
Gene Therapy to Prevent Visual Loss in Macular Degenerations by Increasing Expression of Complement Negative-Regulatory Proteins in the RPE
Macula Vision Research Foundation
Duration: 10/1/13–9/30/16 $100,000

Alappakam P. Sampath, PhD
Functional Characteristics of Rod Pathways in the Retina
National Eye Institute
Duration: 2/1/14–7/31/16 $169,125

Experimental and Clinical Investigations of Retinal Stimulation
University of Southern California
Duration: 10/1/13–2/28/15 $145,805

James Chee Hian Tan, MD, PhD
Role of Trabecular Meshwork Contractility in Modulating Outflow Resistance
National Eye Institute
Duration: 6/16/14–8/31/14 $133,728
Gabriel H. Travis, MD

The Role of Müller Cells in Visual Pigment Regeneration

- **Organizations:** National Eye Institute
- **Duration:** 3/1/08–6/30/18
- **Funding:** $325,650

Vision Science Training Grant to Researchers at the Jules Stein Eye Institute

- **Organizations:** National Eye Institute
- **Duration:** 9/30/11–9/29/16
- **Funding:** $224,437

Bruce Ford and Anne Smith Bundy Foundation Grant

- **Organizations:** Bruce Ford and Anne Smith Bundy Foundation
- **Duration:** 8/16/11–8/15/14
- **Funding:** $99,971

David S. Williams, PhD

Doris and Jules Stein Research to Prevent Blindness Professorship

- **Organizations:** Research to Prevent Blindness
- **Duration:** 1/1/08–12/31/14
- **Funding:** $125,000

RPE Cell Biology of Myosin Vila

- **Organizations:** National Eye Institute
- **Duration:** 7/1/09–6/30/15
- **Funding:** $225,720

The Photoreceptor Cilium

- **Organizations:** National Eye Institute
- **Duration:** 5/1/13–4/30/18
- **Funding:** $245,000

Degradative Processes in RPE-Photoreceptor Renewal

- **Organizations:** University of Pennsylvania
- **Duration:** 2/1/14–1/31/15
- **Funding:** $25,000

IPSC-JSEI Collaboration Project

- **Organizations:** UCLA Broad Stem Cell Research Center
- **Duration:** 4/1/14–4/31/15
- **Funding:** $52,000

Alejandra Young, PhD

The Vision of Children

- **Organizations:** Stem Cell Derived, OA1-Enriched, Microvesicles: Do They Rescue Ocular Albinism?
- **Duration:** 11/1/13–10/31/16
- **Funding:** $174,720

Clinical Trials

Lynn K. Gordon, MD, PhD

- **Organizations:** A Phase I Open Label, Dose Escalation Trial of QPI-1007 Delivered by a Single Intravitreal Injection to Patients with Optic Nerve Atrophy (Stratum I)
- **Organizations:** Quark Pharmaceuticals, Inc.
- **Duration:** 3/17/10–3/16/15
- **Funding:** $248,024

Gary N. Holland, MD

- **Organizations:** Academic Research Organization for Research with Retinal Cells Derived from Stem Cells for Stargardt Macular Dystrophy
- **Organizations:** Advanced Cell Technology
- **Duration:** 4/25/11–12/12/16
- **Funding:** $428,740

- **Organizations:** Academic Research Organization for Research with Retinal Cells Derived from Stem Cells for Age-Related Macular Degeneration
- **Organizations:** Advanced Cell Technology
- **Duration:** 5/31/11–12/12/16
- **Funding:** $428,740

- **Organizations:** Academic Research Organization for Research with Retinal Cells Derived from Stem Cells for Geographic Atrophy Secondary to Myopic Macular Degeneration
- **Organizations:** Advanced Cell Technology
- **Duration:** 3/31/14–3/31/16
- **Funding:** $223,615
A Randomized, Double-Masked, Placebo-Controlled Study of the Safety and Efficacy of Gevokizumab in the Treatment of Subjects with Non-Infectious Intermediate Posterior or Pan-Uveitis Currently Controlled with Systemic Treatment
Xoma (US) LLC
Duration: 1/8/13–11/25/14 $71,593

A Randomized Double-Masked, Placebo-Controlled Study of the Safety and Efficacy of Gevokizumab in the Treatment of Active Non-Infectious Intermediate Posterior, or Pan-Uveitis
Xoma (US) LLC
Duration: 1/8/13–11/25/14 $101,943

Jean-Pierre Hubschman, MD
A Phase 3, Randomized, Double-Masked, Controlled Trial to Establish the Safety and Efficacy of Intravitreous Administration of Fovista (Anti-PDGF-B Pegylated Aptamer)...ARMD
Ophthotech Corporation
Duration: 12/4/13–12/3/15 $130,650

Kevin M. Miller, MD
Safety and Effectiveness of the Customflex Artificial Iris Prosthesis for the Treatment of Iris Defects
Clinical Research Consultants, Inc.
Duration: 6/12/14–6/14/16 $2,500

David Sarraf, MD
Intravitreal Aflibercept Injection for the Treatment of Submacular Vascularized Pigment Epithelial Detachment...EVEN Study
Southern California Desert Retina Consultants
Duration: 2/7/13–12/31/14 $90,641

Steven D. Schwartz, MD
Research with Retinal Cells Derived from Stem Cells for Stargardt Macular Dystrophy
Advanced Cell Technology
Duration: 3/23/11–3/11/15 $762,184

Research with Retinal Cells Derived from Stem Cells for Age-Related Macular Degeneration
Advanced Cell Technology
Duration: 4/5/11–3/11/15 $835,693

Research with Retinal Cells Derived from Stem Cells for Geographic Atrophy Secondary to Myopic Macular Degeneration
Advanced Cell Technology
Duration: 4/10/14–9/1/16 $750,317

Phase 1 Multicenter Open Label Safety and Tolerability Clinical Trial of Ciliary Neurotrophic Factor (CNTF) in Patients with Macular Telangiectasis Type 2
Neurotech Pharmaceuticals, Inc.
Duration: 7/19/11–7/18/14 $28,401

A National History of Macular (Parafoveal) Telangiectasia
Lowy Medical Research Institute
Duration: 7/19/11–7/18/15 $185,695
Faculty, Doheny Eye Centers UCLA

Vision Science Grants

Alex A. Huang, MD, PhD
Anterior Sclera Pathology in Glaucoma
American Glaucoma Society
Mentoring for Advancement of Physician-Scientists (MAPS) Award
Duration: 3/14–3/15
$10,000

Deming Sun, MD
Regulation by Gamma/Delta T Cells of Autoimmune Uveitis
National Eye Institute
Duration: 5/1/12–4/30/16
$287,142
Core Grant for Vision Research
National Eye Institute
Duration: 9/30/97–6/30/14
$125,443

James C. H. Tan, MD, PhD
Role of Trabecular Meshwork Contractility in Modulating Outflow Resistance
National Eye Institute
9/30/10–8/31/14
$247,933
Karl Kirchgessner Foundation Vision Research Grant
The Karl Kirchgessner Foundation
10/17/09–Open
$50,000

Clinical Trials

Peter A. Quiros, MD
NORDIC, Idiopathic Intracranial Hypertension Treatment Trial
National Eye Institute
1/11–3/14
$25,000/year

SriniVas R. Sadda, MD
Genetic Epidemiology of Age-Related Macular Degeneration in the
Older Order Amish
University of Pennsylvania (Subaward on NEI Grant EY023164)
2/1/13–1/31/18
$62,866
Clinical Research Studies

Cornea and External Eye

Analysis of the Corneal and Limbal Epithelial Changes in Limbal Stem Cell Deficiency using In Vivo Confocal Microscopy

Investigators are working to establish a system for diagnosing limbal stem cell deficiency at a cellular level by correlating the information from impression cytology tests, confocal microscopy pictures, and medical records. Investigators: Sophie X. Deng, MD, PhD, and Anthony J. Aldave, MD

Effect of Corneal Preservation Time on Long-Term Graft Success

The purpose of this study is to evaluate the effect of preservation time on corneal transplants. It will compare the preservation time up to the FDA limit of 14 days and hopes to determine that longer preservation time does not adversely impact graft success and endothelial cell density. Investigators: Anthony J. Aldave, MD, and Sophie X. Deng, MD, PhD

Genetic Basis of Posterior Polymorphous Corneal Dystrophy

Funded by the National Eye Institute, this study seeks to identify the gene(s) responsible for posterior polymorphous dystrophy, an inherited corneal endothelial disorder that may result in irreversible corneal swelling and loss of vision. Investigators: Anthony J. Aldave, MD, and Gary N. Holland, MD

Identifying Novel Genes for Fuchs Corneal Endothelial Dystrophy

In this multicenter study, investigators are working to identify the gene(s) responsible for Fuchs corneal endothelial dystrophy, an inherited disorder that may result in irreversible corneal swelling and loss of vision. Investigators: Anthony J. Aldave, MD, Gary N. Holland, MD, and Bartly J. Mondino, MD

Keratoprosthesis Implantation in Patients with Corneal Opacification

This study aims to determine the success rate of keratoprosthesis (artificial corneal) transplantation for visual rehabilitation in patients with corneal opacification. Investigators: Anthony J. Aldave, MD, and Gary N. Holland, MD

Eye Infections and Inflammations

A Comprehensive Analysis of Visual Function in Patients Diagnosed with Birdshot Chorioretinopathy

The main goal in this study is to investigate the relationship between vision dysfunction (eg, symptoms, visual field changes, contrast sensitivity, and color vision changes) experienced by patients diagnosed with birdshot chorioretinopathy and the location of defects in the retina as identified by electrophysiological testing. Investigators: Gary N. Holland, MD, Ralph D. Levinson, MD, and Steven Nusinowitz, PhD

A Comprehensive Analysis of Visual Function in Patients Diagnosed with HIV

The main goal of this study is to determine the sequence of events that lead to visual disturbances in HIV-infected patients. Investigators will obtain measures of visual function with a series of established clinical electrophysiological and psychophysical tests commonly used to evaluate the function at different sites within the retina. Results of this study may enable better understanding and measurements of how vision is affected in subjects diagnosed with HIV. Investigators: Steven Nusinowitz, PhD, and Gary N. Holland, MD

Corneal Endothelial Cell Changes in Children with Uveitis

This is a prospective study to evaluate the cornea, specifically endothelial cells, in children with uveitis. Uveitis is a general term meaning inflammation inside the eye. Investigators will be comparing these changes for children with anterior uveitis who have received a glaucoma drainage tube and those who have not. Investigators: Gary N. Holland, MD, Joseph Caprioli, MD, JoAnn A. Giaconi, MD, Simon K. Law, MD, PharmD, and Ralph D. Levinson, MD

Factors Related to the Severity of Ocular Toxoplasmosis

Toxoplasmosis is a common parasitic disease that can cause a vision-threatening infection of the retina. Individuals with and without ocular toxoplasmosis are being evaluated with a blood test to determine whether (1) people can have a genetic predisposition to severe disease when infected with the parasite, or (2) there is a particular strain of parasite that causes more severe disease than others. Investigators: Gary N. Holland, MD, and Ralph D. Levinson, MD

Longitudinal Studies of the Ocular Complications of AIDS (LSOCA)

LSOCA is a multicenter, National Eye Institute supported, epidemiological study designed to investigate the nature of HIV-related eye diseases since the introduction of potent antiretroviral therapies. More than 2,000 people with AIDS are being followed nationwide. Investigator: Gary N. Holland, MD

Multicenter Uveitis Steroid Treatment (MUST)

Investigators are comparing two currently available treatments for uveitis. Systemic treatment utilizing medications taken orally, by injection, or by intravenous infusion is being compared to treatment with an intraocular implant containing corticosteroid. Investigators: Gary N. Holland, MD, Jean-Pierre Hubschman, MD, and Ralph D. Levinson, MD

Natural Killer Cell Receptor Genes and AIDS-Related CMV Retinitis

Institute faculty members are studying why some people with AIDS develop CMV retinitis, an infection of the retina, while others do not. This study aims to determine whether KIR genes, which control natural killer cell activities and other immune functions, differ between HIV-infected individuals who develop CMV retinitis and those who do not, despite similar risk factors. Investigators: Gary N. Holland, MD, and Ralph D. Levinson, MD
Studies Evaluating a New Drug in the Treatment of Patients with Uveitis
Uveitis is caused by inflammation of the middle layer of the eye. The purpose of this study is to find out more about how the drug works, and if it is effective for treating uveitis by limiting one of the proteins that causes inflammation. Investigators: Gary N. Holland, MD, and Ralph D. Levinson, MD

Glucoma and Optic Nerve
Clinical Measurements of the Optic Nerve in Glaucoma
The goal of this study is to develop novel structural measures of the optic nerve and nerve fiber layer, which are sensitive and specific for early and progressive glaucomatous optic nerve damage. Investigators: Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and Simon K. Law, MD, PharmD

Earlier Intraocular Pressure Control after Ahmed Glaucoma Valve Implantation
The purpose of this study is to evaluate the occurrence rate of the high pressure phase and the final pressure outcomes between subjects treated with glaucoma medications prior to the onset of the high pressure phase and subjects who start glaucoma medications at the onset of the high pressure phase. Investigators: Simon K. Law, MD, PharmD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and JoAnn A. Giaconi, MD

Effect of Yoga on Glaucoma
The purpose of this study is to examine the practice of yoga and its ability to improve a patient’s vision by relieving stress and reducing eye pressure. Investigator: Anne L. Coleman, MD, PhD

Eye Health Imaging Study
The purpose of this study is to expand the normative database for the Heidelberg Spectraris OCT by collecting ophthalmic data from healthy eyes of people of Hispanic/Latino, Asian, and African American descent. Investigators: Joseph Caprioli, MD, and Kourosh Nouri-Mahdavi, MD

Glucoma Drainage Devices and Filtering Surgery with Antimetabolites
This study looks at the effect of two surgical procedures—glaucoma implant surgery and filtering surgery with antimetabolites—on the corneal endothelium. It evaluates the possibility of surgical damage to the corneal endothelium, which may result in loss of corneal clarity. Investigators: Anne L. Coleman, MD, PhD, Joseph Caprioli, MD, JoAnn A. Giaconi, MD, and Simon K. Law, MD, PharmD

Glucoma Imaging Study
This study is evaluating different imaging techniques and their use in improving open-angle glaucoma detection. Investigators: Kourosh Nouri-Mahdavi, MD, and Joseph Caprioli, MD

Glucomatous Cupping and Visual Field Abnormalities in Chinese Young Adults
The glaucoma-like syndrome is a condition where patients appear to have signs of glaucoma but are actually normal. This glaucoma-like syndrome is unusually common in young adults. Chinese patients who normally would not be expected to show signs of eye disease. The purpose of the study is to determine the prevalence and characteristics of the glaucoma-like syndrome in Chinese young adults. Investigator: Simon K. Law, MD, PharmD

Ocular Biometric Measurements in Angle-Closure Glaucoma
The purpose of this study is to determine the potential contributing factors in angle closure patients of different ethnicities and to determine predictive factors for this type of glaucoma. Investigators: Kourosh Nouri-Mahdavi, MD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and Simon K. Law, MD, PharmD

Vision-Related Quality of Life and Ocular Dominance
This study is designed to evaluate how quality of life is impacted by glaucoma in relation to eye dominance. It aims to determine whether quality of life is affected more by glaucoma if it primarily affects the dominant eye. Investigators: Simon K. Law, MD, PharmD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and JoAnn A. Giaconi, MD

Optic Nerve Appearance in Age-Related Macular Degeneration
In order to evaluate the relationship between macular degeneration and optic nerve change, digital imaging technology and photography are being used to assess the structural appearance of the optic nerve in patients with age-related macular degeneration. Investigator: Simon K. Law, MD, PharmD

Role of Pattern Electroretinogram (PERG) in Glaucoma
This study is researching an electrophysiological test called pattern electroretinogram (PERG). The goal is to determine the role of PERG in estimating the risk of future glaucoma progression and the reversibility of glaucomatous damage after treatment. The latter could help clinicians better determine to what extent eye pressure needs to be lowered to prevent disease progression. Investigators: Kourosh Nouri-Mahdavi, MD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, JoAnn A. Giaconi, MD, and Simon K. Law, MD, PharmD

Effect of slopes on glaucoma
The study is examining how one of the proteins that causes inflammation of the middle layer of the eye can affect the optic nerve. Investigators: Joseph Caprioli, MD, and Ralph D. Levinson, MD

Glaucoma Drainage Devices and Filtering Surgery with Antimetabolites
This study is evaluating the occurrence of high pressure phase and the final pressure outcomes between subjects treated with glaucoma medications prior to the onset of the high pressure phase and subjects who start glaucoma medications at the onset of the high pressure phase. Investigators: Simon K. Law, MD, PharmD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and JoAnn A. Giaconi, MD

Effect of Yoga on Glaucoma
The purpose of this study is to examine the practice of yoga and its ability to improve a patient’s vision by relieving stress and reducing eye pressure. Investigator: Anne L. Coleman, MD, PhD

Eye Health Imaging Study
The purpose of this study is to expand the normative database for the Heidelberg Spectraris OCT by collecting ophthalmic data from healthy eyes of people of Hispanic/Latino, Asian, and African American descent. Investigators: Joseph Caprioli, MD, and Kourosh Nouri-Mahdavi, MD

Glucoma and Optic Nerve
Clinical Measurements of the Optic Nerve in Glaucoma
The goal of this study is to develop novel structural measures of the optic nerve and nerve fiber layer, which are sensitive and specific for early and progressive glaucomatous optic nerve damage. Investigators: Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and Simon K. Law, MD, PharmD

Earlier Intraocular Pressure Control after Ahmed Glaucoma Valve Implantation
The purpose of this study is to evaluate the occurrence rate of the high pressure phase and the final pressure outcomes between subjects treated with glaucoma medications prior to the onset of the high pressure phase and subjects who start glaucoma medications at the onset of the high pressure phase. Investigators: Simon K. Law, MD, PharmD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and JoAnn A. Giaconi, MD

Effect of Yoga on Glaucoma
The purpose of this study is to examine the practice of yoga and its ability to improve a patient’s vision by relieving stress and reducing eye pressure. Investigator: Anne L. Coleman, MD, PhD

Eye Health Imaging Study
The purpose of this study is to expand the normative database for the Heidelberg Spectraris OCT by collecting ophthalmic data from healthy eyes of people of Hispanic/Latino, Asian, and African American descent. Investigators: Joseph Caprioli, MD, and Kourosh Nouri-Mahdavi, MD

Glucoma Drainage Devices and Filtering Surgery with Antimetabolites
This study looks at the effect of two surgical procedures—glaucoma implant surgery and filtering surgery with antimetabolites—on the corneal endothelium. It evaluates the possibility of surgical damage to the corneal endothelium, which may result in loss of corneal clarity. Investigators: Anne L. Coleman, MD, PhD, Joseph Caprioli, MD, JoAnn A. Giaconi, MD, and Simon K. Law, MD, PharmD

Glucoma Imaging Study
This study is evaluating different imaging techniques and their use in improving open-angle glaucoma detection. Investigators: Kourosh Nouri-Mahdavi, MD, and Joseph Caprioli, MD

Glucomatous Cupping and Visual Field Abnormalities in Chinese Young Adults
The glaucoma-like syndrome is a condition where patients appear to have signs of glaucoma but are actually normal. This glaucoma-like syndrome is unusually common in young adults. Chinese patients who normally would not be expected to show signs of eye disease. The purpose of the study is to determine the prevalence and characteristics of the glaucoma-like syndrome in Chinese young adults. Investigator: Simon K. Law, MD, PharmD

Ocular Biometric Measurements in Angle-Closure Glaucoma
The purpose of this study is to determine the potential contributing factors in angle closure patients of different ethnicities and to determine predictive factors for this type of glaucoma. Investigators: Kourosh Nouri-Mahdavi, MD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and Simon K. Law, MD, PharmD

Vision-Related Quality of Life and Ocular Dominance
This study is designed to evaluate how quality of life is impacted by glaucoma in relation to eye dominance. It aims to determine whether quality of life is affected more by glaucoma if it primarily affects the dominant eye. Investigators: Simon K. Law, MD, PharmD, Joseph Caprioli, MD, Anne L. Coleman, MD, PhD, and JoAnn A. Giaconi, MD

Lens and Cataract
Morcher Iris Diaphragm
After obtaining a compassionate use Individual Device Exemption from the U.S. Food and Drug Administration to use the Morcher Iris Diaphragm implant in patients with partial or complete aniridia, the Institute is now evaluating its preliminary effectiveness. The implant is designed to limit the amount of light coming into the eye, similar to a natural iris, reducing symptoms of light sensitivity and glare. Investigator: Kevin M. Miller, MD
Ophtec Iris Reconstruction Lens

The Institute is participating in a multicenter clinical investigation designed to evaluate the safety and effectiveness of the Ophtec Model 311 Iris Reconstruction Lens for the treatment of visual disturbances related to the absence of a portion of, or the entire, human iris. Investigator: Kevin M. Miller, MD

Post-Approval Study of ACRYSOF® IQ Toric High Cylinder Power Intraocular Lens

This is a post-approval study of an intraocular lens. The primary objective of this study is to evaluate an FDA-approved intraocular lens (Models SN6AT6-SN6AT9) for patients with corneal astigmatism. Investigators: Kevin M. Miller, MD, and D. Rex Hamilton, MD

Safety and Effectiveness of the Calhoun Vision Light Adjustable Lens for Treating Postoperative Sphere and Cylinder

This is a prospective, randomized controlled multicenter clinical study to evaluate the safety and effectiveness of Light Adjustable Lens in subjects with preoperative corneal astigmatism. Investigators: Kevin M. Miller, MD, Anthony J. Aldave, MD, and D. Rex Hamilton, MD

Macula, Retina, and Vitreous

Air, Perfluoropropane, and Sulfur Hexafluoride Gas Disappearance Variability after Vitrectomy

The purpose of this study is to evaluate different gases used in vitrectomy surgeries and to understand why there is variability in the time that the different gases remain in the eye after vitrectomy surgery. Investigators: Jean-Pierre Hubschman, MD, and Steven D. Schwartz, MD

A Safety and Tolerability Trial ofCNTF in Patients with MacTel Type 2

This study is assessing the safety of the NT-501 implant in patients with macular telangiectasia type 2. The device, an implant, is a small capsule of cells that is placed inside the eye. This allows a controlled, sustained release of CNTF directly to the retina. Investigators: Steven D. Schwartz, MD, Jean-Pierre Hubschman, MD, and Allan E. Kreiger, MD

A Study to Evaluate the Treatment of Subfoveal Pigment Epithelial Detachment Associated with Choroidal Neovascularization

The aim of this study is to see if the treatment of pigment epithelial detachment is safe and effective with the regular dose of intravitreal aflibercept injection. This study is being performed in collaboration with Southern California Desert Retina Consultants. Investigator: David Sarraf, MD

Clinical Characterization, Genetic Testing, and Visual Function in Patients with Stargardt Disease

Investigators are doing a comprehensive analysis of visual function in patients diagnosed with Stargardt disease, an early onset form of macular degeneration caused by a number of mutations in the ABCR gene. They are performing molecular genetic testing to confirm the Stargardt diagnosis and better understand the diversity of the condition. Investigators: Michael B. Gorin, MD, PhD, Debora B. Farber, PhD, DPhhc, Steven Nusinowitz, PhD, and Maria Carolina Ortube, MD

Dexamethasone Injections in the Treatment of Diabetic Macular Edema

Faculty members are participating in a study to assess the safety and efficacy of 70 mg and 350 mg dexamethasone posterior segment drug delivery systems in the treatment of patients with diabetic macular edema. Investigators: Steven D. Schwartz, MD, Allan E. Kreiger, MD, and Tara A. McCannel, MD, PhD

Genetics of Age-Related Maculopathy (GARM I)

In this multicenter study with the University of Pittsburgh, investigators are evaluating the genetic and environmental risks that contribute to age-related maculopathy (ARM). The study is designed to identify genes that alter susceptibility to ARM and determine the extent to which variants in these genes and other factors affect one’s risk of developing the condition. Investigators: Michael B. Gorin, MD, PhD, and Maria Carolina Ortube, MD

Genetics of Age-Related Maculopathy (GARM II)

The purpose of this study is to identify the hereditary and exposure risk factors that lead to the development of age-related maculopathy (ARM) in a cohort with a family history of the disease. The study is intended for individuals (49 and older) who have at least one parent with this condition, the spouses or partners of these individuals, and the parents themselves. Investigators: Michael B. Gorin, MD, PhD, and Maria Carolina Ortube, MD

Heavy Metals in Surgically Removed Human Ocular Tissue

Faculty members are examining the concentration of heavy metals in ocular tissue compared to blood concentrations. High volumes of specific heavy metals in the vitreous have been found to cause toxicity in the retina. Information about the concentrations of heavy metals in common vitreoretinal diseases could lead to a new physiopathological approach. Investigators: Jean-Pierre Hubschman, MD, and Steven D. Schwartz, MD

Incidence of Late Macular Degeneration in Older Women

The goal of this research is to determine the incidence of late age-related macular degeneration (AMD), the rate of progression of AMD, and the association of specific risk factors such as diabetes mellitus and prior cataract surgery with late AMD and its progression in older women. Investigator: Anne L. Coleman, MD, PhD

Lucentis and Fovista Combination Therapy for Wet AMD Compared to Lucentis Only

The purpose of this study is to evaluate the safety and efficacy of Fovista™ intravitreous administration when administered in combination with Lucentis® compared to Lucentis monotherapy in subjects with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Investigator: Jean-Pierre Hubschman, MD
The purpose of this study is to assess the potential of currently available curing lights to cause retinal damage to dental personnel, to evaluate the amount of exposure to curing lights by dental personnel, and to assess current levels of retinal degenerative changes in dental workers that are possibly induced by curing lights. Investigators: Jean-Pierre Hubbschman, MD, and Steven D. Schwartz, MD

P200CAF Autofluorescence Ultra-Widefield Scanning Laser Ophthalmoscope in Subjects with Vitreoretinal Disease

This study utilizes an ultra-widefield scanning laser ophthalmoscope with autofluorescence (SLO-AF) to take pictures of the retina in a noninvasive way. Images acquired with the SLO-AF are compared with those from other currently available instruments to evaluate the potentially improved resolution for diagnosis of retinal eye diseases. Investigators: Steven D. Schwartz, MD, Jean-Pierre Hubbschman, MD, Allan E. Kreiger, MD, and Tara A. McCannel, MD, PhD

Mobile Application to Enhance Diabetic Care

This study is being conducted to determine whether use of an Internet application to record and coordinate diabetes management by the diabetic patient, diabetes medical care team, and ophthalmology vision care team results in improved control of diabetes and decreased risk of eye complications. Investigators: Irena Tsui, MD, and Bradley R. Straatsma, MD

Natural History Study of Macular Telangiectasia

Investigators are collecting data about macular telangiectasia with the goal of acquiring more knowledge of and developing a treatment for this rare retinal disease. Investigators: Steven D. Schwartz, MD, Michael B. Gorin, MD, PhD, Jean-Pierre Hubbschman, MD, Allan E. Kreiger, MD, Tara A. McCannel, MD, PhD, and David Sarraf, MD

Ocular Hazards from Currently Available Light Curing Units

The purpose of this study is to assess the potential of currently available curing lights to cause retinal damage to dental personnel, to evaluate the amount of exposure to curing lights by dental personnel, and to assess current levels of retinal degenerative changes in dental workers that are possibly induced by curing lights. Investigators: Jean-Pierre Hubbschman, MD, and Steven D. Schwartz, MD

Research with Retinal Cells Derived from Stem Cells for Myopic Macular Degeneration

The aim of this study is to determine the safety and tolerability of subretinal transplantation of human embryonic stem cell derived retinal pigmented epithelial (MA09-hRPE) cells in patients with geographic atrophy secondary to myopic macular degeneration. Investigators: Steven D. Schwartz, MD, Jean-Pierre Hubbschman, MD, and Allan E. Kreiger, MD

Research with Retinal Cells Derived from Stem Cells for Stargardt Macular Dystrophy

This study is evaluating the safety of surgical procedures used to implant MA09-hRPE cells, assessing the number of cells to be transplanted in future studies, and evaluating measures for determining the effectiveness of future stem cell therapy for Stargardt macular dystrophy. Investigators: Steven D. Schwartz, MD, Jean-Pierre Hubbschman, MD, and Allan E. Kreiger, MD

Resolution of Vitreomacular Adhesion Associated with Neovascular Age-Related Macular Degeneration with Intravitreal Microplasmin

Faculty members are evaluating the safety and efficacy of intravitreal injection of microplasmin on age-related macular degeneration (AMD) with focal vitreomacular adhesion (VMA). Previous research has shown that intravitreal microplasmin may offer physicians a safe agent for resolution of focal VMA in AMD patients without surgery. Investigators: Steven D. Schwartz, MD, and Jean-Pierre Hubbschman, MD

Understanding the Genetics of Inherited Eye Disorders

The Institute is participating in a study to search for the gene(s) responsible for inherited disorders that are either specific to the eye or have eye findings as part of the medical condition. This study provides for the clinical characterization of affected individuals and at-risk family members, in conjunction with molecular genetic testing, to identify the causative genes and mutations. Investigators: Anthony J. Aldave, MD, Michael B. Gorin, MD, PhD, and Maria Carolina Ortube, MD
Vitamin Supplementation as Treatment for Dry Age-Related Macular Degeneration
This study explores the effects of oral supplementation of lutein and zeaxanthin and/or omega 3 long chain polyunsaturated fatty acids, called DHA and EPA, on the development of age-related macular degeneration and vision loss. Investigators: Steven D. Schwartz, MD, Michael B. Gorin, MD, PhD, Jean-Pierre Hubschman, MD, Allan E. Kreiger, MD, Tara A. McCannel, MD, PhD, and David Sarraf, MD

Orbital and Ophthalmic Plastic Surgery
A Research Study Evaluating a New Drug for the Treatment of Thyroid Eye Disease
The purpose of this study is to obtain information on the safety and effectiveness of an investigational drug to treat thyroid eye disease (TED). People with TED experience eye problems often due to an overactive thyroid caused by Graves’ disease. Investigator: Robert Alan Goldberg, MD

Characteristics of the Brow–Eyelid Margin Relationship
The purpose of this study is to determine if changing the effect of gravity has an effect on eyelid position. Investigator: Robert Alan Goldberg, MD

Hyaluronic Acid Gels for Upper Lid Retraction in Active State Thyroid Eye Disease
The purpose of this study is to determine if hyaluronic acid gel (HAG) can be used reliably and reproducibly to correct upper eyelid retraction, improve dry eye related symptoms, aesthetic appearance, and quality of life in active stage thyroid eye disease (TED). The study also aims to determine the long-term outcome of TED and how long the effects of HAG can last. Investigator: Catherine J. Hwang, MD

Pro-Inflammatory Cytokines, Dry Eye, and Thyroid Eye Disease
The purpose of this study is to determine whether there are specific inflammatory proteins in tears of patients with active stage thyroid eye disease (TED). If these inflammatory proteins exist, the study aims to determine whether they can be used to predict dry eye symptomatology and if they can be used to predict TED activity. Investigators: Robert Alan Goldberg, MD, and Daniel Rootman, MD

PET/CT Imaging for Early Detection of Ocular Melanoma
This research involves the use of combined positron emission tomography (PET)/computed tomography (CT) scans in subjects with ocular melanoma. It may ultimately provide new knowledge that will be used to develop better ways of monitoring for tumor spread and allow for early treatment if metastasis is found. Investigators: Tara A. McCannel, MD, PhD, and Bradley R. Straatsma, MD, JD

Ocular Melanoma
Molecular and Cytogenetic Studies of Ocular Melanoma
The goal of this research is to study ocular melanoma tumor tissue and to identify key molecular and genetic features that could help predict those patients who may be at high risk for metastasis. Investigators: Tara A. McCannel, MD, PhD, Lynn K. Gordon, MD, PhD, and Bradley R. Straatsma, MD, JD

Optical Coherence Tomography of Regional Abnormalities Associated with Choroidal Nevus, Choroidal Melanoma, and Choroidal Melanoma Treated with Iodine-125 Brachytherapy
In this study, optical coherence therapy (OCT) imaging is performed during regularly scheduled visits and to identify key molecular and genetic features that could help predict those patients who may be at high risk for metastasis. Investigators: Tara A. McCannel, MD, PhD, Lynn K. Gordon, MD, PhD, and Bradley R. Straatsma, MD, JD

PET/CT Imaging for Early Detection of Ocular Melanoma
This research involves the use of combined positron emission tomography (PET)/computed tomography (CT) scans in subjects with ocular melanoma. It may ultimately provide new knowledge that will be used to develop better ways of monitoring for tumor spread and allow for early treatment if metastasis is found. Investigators: Tara A. McCannel, MD, PhD, and Bradley R. Straatsma, MD, JD

Studies on Tissue in Autoimmune Diseases
This study aims to determine the cause of eye problems in Graves disease and other autoimmune diseases. Examination is being done of material removed from orbits during surgical therapy for Graves disease or other problems requiring surgery on the tissue surrounding the eyes, of thyroid tissue removed during the course of surgical therapy, or of blood drawn for laboratory tests. Investigator: Robert Alan Goldberg, MD

Ultrasound Study of Eyelid Mobility Before and After Blepharoplasty and Injectable Fillers
This study uses a high-resolution ultrasound machine to capture real-time films of the tissues immediately surrounding the eye. Patients in each of the following three arms are being studied: pre/post botulinum toxin injection, pre/post synthetic filler injection, and pre/post periocular cosmetic surgery, including fat repositioning or fat transfer. Data gathered is being used to study the dispersion of filler injections, to gain more detailed and accurate insight into this cosmetic field. Investigator: Robert Alan Goldberg, MD

Volumetric Analysis of Orbital Images (CT and MRI Sequences) with Mimics Image Processing Software
This study is evaluating the volumetric changes of orbital tissues using a validated 3D image processing software. Orbital diseases such as thyroid eye disease, myositis, inflammatory and neoplastic conditions are characterized by significant soft tissue changes. Their assessment with Mimics software is helpful in understanding the clinical course of these diseases, as well as defining the etiologic and pathogenetic mechanisms involved. Investigator: Robert Alan Goldberg, MD

Quality of Life Study in Patients with Graves Disease
This study is assessing the quality of life in patients with Graves disease orbitopathy before and after medical treatment or medical procedures. Investigator: Robert Alan Goldberg, MD
Pediatrics and Strabismus

A Randomized Clinical Trial of Observation Versus Occlusion Therapy for Intermittent Exotropia

Although occlusion treatment, or patching of the eye, is a widely used treatment for intermittent exotropia (IXT), there have been no randomized clinical trials evaluating its effectiveness. This study is being conducted to assess the natural history of IXT and to establish the effectiveness of patching in its treatment. Investigators: Stacey L. Pineles, MD, and Federico G. Velez, MD

A Randomized Trial of Levadopa as Treatment for Residual Amblyopia (ATS17)

The objective of this study is to compare the efficacy and safety of oral levodopa and patching versus oral placebo and patching in children 7 to <13 years for residual amblyopia. Investigators: Stacy L. Pineles, MD, and Federico G. Velez, MD

Biomechanical Analysis in Strabismus Surgery

This study aims to develop new diagnostic tests and computer models that will lead to improvements in strabismus surgery. Tests of binocular alignment and eye movements, as well as magnetic resonance imaging of the extraocular muscles, are being performed in the Institute’s Clinical and Basic Science Ocular Motility Laboratory before and after strabismus surgery. To date, this research has fundamentally contributed to the knowledge of the functional anatomy of the extraocular muscles and connective tissues, and allowed discovery of causes of common strabismus and development of new types of surgeries. Investigator: Joseph L. Demer, MD, PhD

Contact Lens Study

The purpose of this study is to identify rates of complications and correlations to modality of wear, care system, hygiene, or other factors associated with contact lens complications. Investigators: Vivian Phan, OD, Sharon Y. Lee, OD, and Bartly J. Mondino, MD

Genetic and Anatomic Studies of Eye Movement Disorders

This collaborative National Eye Institute-funded study is conducting magnetic resonance imaging on the extraocular muscles. This procedure clarifies the phenotypes and mechanisms of congenital cranial dysinnervation syndromes whose hereditary properties have been characterized using modern molecular genetics. Patients with these syndromes have severe forms of strabismus. Investigator: Joseph L. Demer, MD, PhD

Optical Coherence Tomography in the Newborn Eye

The purpose of this study is to better characterize the retina and optic nerve in newborns using spectral-domain optical coherence tomography (SD-OCT). SD-OCT has been used for many years to help diagnose and treat adults with eye diseases, but it has never been studied in newborns, where it could potentially help in the diagnoses of glaucoma, optic nerve hypoplasia, foveal hypoplasia, and colobomata, among many other disorders. Investigator: Sherwin J. Isenberg, MD

Optic Nerve in Amblyopia

Amblyopia is a major cause of childhood visual loss. This study uses high-resolution, surface-coil magnetic resonance imaging to study optic nerve size in amblyopia. It tests the theory that the optic nerve is smaller than normal in amblyopia and that optic nerve size may be a limiting factor in restoration of vision by amblyopia treatment. Investigator: Joseph L. Demer, MD, PhD

Prevention of Visual Impairment in School-Age Children

In this community-based participatory intervention to promote the use of eyeglasses in schools, first- and second-grade students with refractive errors receive two pairs of eyeglasses, with one pair staying at home and the other in the classroom. School nurses collaborate with teachers in monitoring the use of eyeglasses in the classroom, and parents receive eye care education. Investigator: Anne L. Coleman, MD, PhD

Sweep Visual Evoked Potential for Use in Amblyopia and Pediatric Optic Nerve Disorders

Using a new technique, investigators are measuring vision in preverbal children to diagnose and follow optic nerve diseases. Currently, treatment decisions are based on clinical examinations that are insensitive and reveal vision loss well after permanent damage has taken place. This technique allows more accurate examinations, leading to provision of treatments at the first signs of vision loss, thereby decreasing the risk of permanent damage. Investigators: Stacey L. Pineles, MD, Joseph L. Demer, MD, PhD, Sherwin Isenberg, MD, and Federico G. Velez, MD

Prospective Study to Determine the Proportion of Patients with Isolated Third, Fourth, and Sixth Nerve Palsies of Microvascular Versus Nonmicrovascular Etiology

Currently, magnetic resonance imaging scanning is only recommended in atypical cases (ie, young age, no vascular risk factors). The purpose of this multicenter study is to determine whether central nervous system abnormalities are detected in patients who otherwise would not have neuroimaging. Investigator: Stacey L. Pineles, MD

Appendices | Stein Eye Institute 115

The Stein Eye Institute is dedicated to the preservation of sight and the prevention of blindness. Today, UCLA’s vision scientists are extending the boundaries of current knowledge and approaching the goal for a lifetime of good vision for everyone, due in large part to a strong tradition of philanthropy from private sources.

Contributions from individuals, foundations, and corporations, help underwrite exemplary patient-care programs, innovative scientific advances, key community engagement, and the highest-quality training and education. The Institute offers a variety of giving options to those who wish to contribute to this tradition of excellence.

How to Support the Stein Eye Institute

Direct Gifts
Direct gifts of cash, securities, or other property provide the Institute with much-needed financial assistance. Outright gifts have an immediate impact on faculty research, education, and patient care programs because they are used to support a variety of current needs.

Gift Pledges
A pledge is a formal statement of intention to make a gift to the Institute. It may be followed by an immediate gift, or may simply confirm your intention to make a gift in the future. Many donors choose to complete their gift pledge by making regular payments over a five-year period. This method often allows donors to give more generously than they may have originally considered. Whenever possible, full payment of pledges is encouraged within five years of the original commitment.

Securities
A gift of long-term appreciated marketable securities helps you save taxes twice. Such a gift will provide an income-tax charitable deduction and capital gains tax savings.

Matching Gifts
Many corporations have demonstrated their support by matching or multiplying their employees’ gifts to the Institute up to a set amount. Before making a gift, you may want to ask whether your employer participates in a matching gift program. Certain restrictions apply to matching gifts. Please consult your company’s personnel office.

Real Estate
When you give a gift of your home or real property to the Institute, you may claim an income-tax charitable deduction based on the full market value of the gift, avoid capital gains taxes, and eliminate certain costs associated with the transfer of real property. Gifts of real estate can also provide income to you.

Bequests
In writing a will or living trust, donors can specify that they would like their estate or various assets to benefit the Institute, thereby building a legacy at the Stein Eye Institute.

Charitable Gift Annuity
Donors can transfer money, securities, or real estate in trust to the Institute and receive income for themselves or a loved one for life. Donors may receive immediate tax benefits, and the Institute ultimately receives the trust property.

Tribute Gifts
Contributions may be made in memory, honor, or celebration of a loved one, or to commemorate a special occasion. Donations can be used for unrestricted program support or be directed to any area of the Institute.

Endowments
A gift of an endowment demonstrates a long-term commitment to the Institute, since the fund is maintained in perpetuity. A portion of the annual investment income is used to support clinical, educational, and scientific initiatives and the remaining investment yield is returned to principal, thus, over the years, the fund can grow and provide continuous support.

An endowment serves as an enduring legacy as it can bear the donor’s name, or can honor a loved one. These funds can be made payable for up to five years. Giving opportunities exist for endowed chairs, endowed fellowships, and endowed funds for research, education, and patient care.

Qualified Retirement Plans
Naming The UCLA Foundation as a beneficiary of your qualified retirement plan (IRA, KEOGH, 401(k) or 403(b)) may be particularly advantageous. Doing so may result in more assets being passed on to your heirs than if you make a bequest from other funds in your estate.

Your Gift Can Make a Difference
However you choose to support the Institute, you will be embarking on a partnership with one of the world’s preeminent eye research centers. Such an investment will greatly expand our understanding of the causes of eye diseases, expose alternative treatment options, and ultimately prevent blindness.

For information on how to incorporate the Stein Eye Institute into your estate and retirement planning, or to make a gift of any kind, please contact:

Stein Eye Institute Development Office
100 Stein Plaza, Room 1-124
University of California, Los Angeles
Los Angeles, California 90095-7000
Phone: (310) 206-6035
Fax: (310) 794-1665
giving@jsei.ucla.edu

To make a gift, you may also download a remittance form from our website by visiting: jsei.org/about/about_giving.htm.
The Stein Eye Institute is a proud affiliate of the Doheny Eye Institute.

David Geffen School of Medicine at UCLA
University of California, Los Angeles