Rhinosinusitis (RS) affects approximately 1 in 7 adults in the United States, and its effect on quality of life, productivity, and finances is substantial. During the past 10 years, several expert panels from authoritative bodies have published evidence-based guidelines for the diagnosis and management of RS and its subtypes, including acute viral RS, acute bacterial RS, chronic RS (CRS) without nasal polyposis, CRS with nasal polyposis, and allergic fungal RS. This review examines and compares the recommendations of the Rhinosinusitis Initiative, the Joint Task Force on Practice Parameters, the Clinical Practice Guideline: Adult Sinusitis, the European Position Paper on Rhinosinusitis and Nasal Polyps 2007, and the British Society for Allergy and Clinical Immunology. Points of consensus and divergent opinions expressed in these guidelines regarding classification, diagnosis, and management of adults with acute RS (ARS) and CRS and their various subtypes are highlighted for the practicing clinician. Key points of agreement regarding therapy in the guidelines for ARS include the efficacy of symptomatic treatment, such as intranasal corticosteroids, and the importance of reducing the unnecessary use of antibiotics in ARS; however, guidelines do not agree precisely regarding when antibiotics should be considered as a reasonable treatment strategy. Although the guidelines diverge markedly on the management of CRS, the diagnostic utility of nasal airway examination is acknowledged by all. Important and relevant data from MEDLINE-indexed articles published since the most recent guidelines were issued are also considered, and needs for future research are discussed.

Rhinosinusitis (RS) poses a major health problem, substantially affecting quality of life, productivity, and finances. According to a recent analysis of US National Health Interview Survey data, RS affects approximately 1 in 7 adults.1 The number of workdays missed annually because of RS was similar to that reported for acute asthma (5.67 days vs 5.79 days, respectively), and patients with RS were more likely to spend greater than $500 per year (5.67 days vs 5.79 days, respectively), and patients with RS were more likely to spend greater than $500 per year on health care than were people with chronic bronchitis, ulcer disease, asthma, and hay fever (all, P<.001).2 Other data suggest that chronic RS (CRS) affects certain general health domains (social functioning, bodily pain) more than angina, chronic heart failure, chronic obstructive pulmonary disease, or chronic back pain.3

Although a common illness, RS presents a number of diagnostic and management challenges to the practicing clinician. Rhinosinusitis is the broad umbrella term covering multiple disease entities, including acute RS (ARS), CRS, and nasal polyposis (NP).4 However, RS has numerous subtypes and distinct etiologies, wide variations in severity and clinical presentation, and overlapping symptomatology and/or pathology with other medical conditions. Simple and accurate office-based testing methods for its detection are lacking.

During the past decade, a number of expert panels have put forth evidence-based guidelines for the diagnosis and management of RS, including its subtypes.4-7 Table 1 lists the organizations contributing to each of the projects: the European Position Paper on Rhinosinusitis and Nasal Polyps 2007 (EP3OS),4 the Rhinosinusitis Initiative (RI),5,9 the Joint Task Force on Practice Parameters (JTFFP),6 and the Clinical Practice Guideline: Adult Sinusitis (CPG:AS).7 Another, comparatively brief, guideline has been released by the British Society for Allergy and Clinical Immunology (BSACI)8; its recommendations frequently correspond with those of the EP3OS. These guidelines draw from the evidence base of the published literature and reflect as well the viewpoints of many leading experts in the fields of allergy, immunology, and otolaryngology. Intended to benefit the practicing clinician, this review compares the recommendations made for the diagnosis and management of RS in these 5 guidelines and evaluates the sometimes limited and contradictory evidence that underpins them and the variable quality of the studies that produced that evidence. Significant, relevant data published in MEDLINE-indexed articles since the most recent guidelines were issued are

From the Allergy and Asthma Medical Group and Research Center, San Diego, CA (E.O.M.); and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston (D.L.H.).

Dr Meltzer has received grant/research support from Alcon, Alexza Pharmaceuticals, Amgen, Antigen Labs, Aptex, Astellas, AstraZeneca, Boehringer Ingelheim, Forest, GlaxoSmithKline, Johnson & Johnson, MAP MEDA, Medimmune, Merck, Novartis, Proctor & Gamble, Schering-Plough, Sepracor, Teva, and UCB. He has served as a consultant/speaker for Alcon, Alexza Pharmaceuticals, Amgen, AstraZeneca, Boehringer Ingelheim, Capnia, Dainippon Sumitomo, Dev, GlaxoSmithKline, ISTA, Johnson & Johnson, Kalypsys, MAP Meda, Merck, Sanofi-Aventis, Schering-Plough, Sepracor, SRRA, Stallergenes, Teva, Ventixx, Wockhardt, and Wyeth. Dr. Hamilos has received book royalties from UpToDate and Informa. Editorial assistance for the submitted manuscript was funded by Schering Corp, now Merck & Co.

An earlier version of this article appeared Online First.

Individual reprints of this article are not available. Address correspondence to Eli O. Meltzer, MD, Allergy and Asthma Medical Group and Research Center, 9610 Granite Ridge Dr, Ste B, San Diego, CA 92123 (emeltzer@aol.com).

© 2011 Mayo Foundation for Medical Education and Research
also reviewed. Key recommendations for diagnosis and treatment are indicated throughout the article in italics. As it is beyond the scope of this review to address the entire contents of these guidelines, the reader is encouraged to refer to the original documents.

RHINOSINUSITIS NOMENCLATURE

Rhinosinusitis vs Sinusitis

Of the 5 guidelines and expert panel documents, 4 (EP3OS, RI, CPG:AS, and BSACI)\(^4,5,7,8\) have adopted the term *rhinosinusitis* in place of *sinusitis*, the exception being the JTFFP.\(^6\) The term *rhinosinusitis* may be more appropriate given that the nasal middle turbinate extends directly into the ethmoid sinuses, and effects on the middle turbinate may be seen in the anterior ethmoid sinuses as well. Clinically, sinus inflammation (ie, sinusitis) rarely occurs without concomitant inflammation of the contiguous nasal mucosa.\(^7\) Regardless, the expert panels that adopted *rhinosinusitis* acknowledged that the terms *rhinosinusitis* and *sinusitis* should be used interchangeably, especially because the term *rhinosinusitis* has only come into common use during the past decade.

CLASSIFICATION BY DURATION OF SYMPTOMS

Of the various subclassifications of RS, the simplest differentiation is based on duration of symptoms. Acute RS is defined by 3 of the guidelines (RI, JTFFP, and CPG:AS) as symptom duration of 4 weeks or less.\(^5,7\) The EP3OS\(^4\) and BSACI\(^8\) guidelines qualify ARS as lasting less than 12 weeks, with complete resolution of symptoms. The CPG:AS includes a category of subacute RS, defined as symptom duration between 4 and 12 weeks, whereas the JTFFP\(^6\) definition specifies 4 to 8 weeks. Recurrent ARS is classified by the CPG:AS guidelines as 4 or more episodes of ARS within 1 year, without persistent symptoms between episodes.\(^7\) The JTFFP defines recurrent RS as 3 or more episodes per year.\(^6\)

Four of the 5 guidelines (EP3OS,\(^4\) RI,\(^5\) CPG:AS,\(^7\) and BSACI\(^8\)) designate CRS as symptoms persisting 12 weeks or longer, whereas the JTFFP\(^6\) indicates 8 weeks.

CLASSIFICATION BY SEVERITY OF SYMPTOMS

All 5 guidelines recognize that an assessment of symptom severity is important to define the magnitude of disease and assist with treatment selection. For clinical purposes, the EP3OS and BSACI guidelines categorize disease severity on the basis of a 10-cm visual analog scale (VAS) that has been statistically validated for use in patients with RS. Patients responding to the question “How troublesome are your symptoms of rhinosinusitis?” provide a rating, with the scale ranging from 0 (“not troublesome”) to 10 (“worst thinkable troublesome”). Scores are categorized as follows, between 0 and 3, mild disease; greater than 3 to 7, moderate disease;
and greater than 7 to 10, severe disease.4 Scores greater than 5 have been correlated with quality of life detriments.10

DIAGNOSIS OF ARS

CARDINAL SIGNS OR SYMPTOMS
The expert guidelines demonstrate close agreement in their identification of the hallmark signs or symptoms of ARS; however, specific algorithms differ somewhat, as detailed in Table 2.4-7 Three major signs or symptoms are consistently cited across all the guidelines as being primary diagnostic indicators for ARS: nasal congestion, obstruction, or blockage; anterior and/or posterior purulent rhinorhoea (\textit{EP3OS}4 and \textit{BSACI}8 do not specify "purulent"); and facial pain or pressure. The RI guidelines5 state that a diagnosis of ARS is probable if 2 or more of these major symptoms

TABLE 2. Summary of Recent Evidence-Based Guidelines for the Diagnosis of ARS (Suspected AVRS or ABRS)a,b

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Hallmark signs and symptoms</th>
<th>Diagnostic criteria and definitions</th>
<th>Special assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{EP3OS,}4 2007</td>
<td>Inflammation of the nose and paranasal sinuses characterized by ≥2 symptoms, 1 of which should be either nasal blockage/obstruction/congestion or nasal discharge (anterior/posterior nasal drip) ± Facial pain/pressure ± Reduction or loss of smell</td>
<td>Presumed AVRS Duration of symptoms <10 d Presumed ABRS Increase of symptoms after 5 d of persistent symptoms Duration of symptoms >10 d</td>
<td>Not recommended Radiographic imaging CT (except in patients with severe disease, those who are immunocompromised, and those with suspected complications) Optional Anterior rhinoscopy Nasal endoscopy Nasal culture, in case of treatment failure or complications</td>
</tr>
<tr>
<td>RI,5 2004</td>
<td>Major symptoms Purulent-discolored anterior or posterior nasal drainagec Nasal obstruction/blockagec Facial congestion/fullness Facial pain/pressure/fullnessc Hyposmia/anosmia Fever (acute only) Minor symptoms Headache Ear pain/pressure/fullness Halitosis Dental pain Cough Fever Fatigue</td>
<td>Required symptoms Anterior and/or posterior purulent drainage + nasal obstruction OR facial pain/pressure/fullness ABRs suspected if symptoms persist ≥10 d beyond the onset of upper respiratory symptoms, worsen within 10 d of initial improvement, or are particularly severe in the first 3-4 d of illness</td>
<td>Not required Radiography (in most cases) CT (except in recurrent cases and before surgery) Exception Diagnosis of ABRs requires objective documentation by either nasal airway examination for purulent drainage or radiographic evidence</td>
</tr>
<tr>
<td>\textit{JTFPP,}6 2005</td>
<td>Symptons Nasal congestion Purulent rhinorhoea Facial-dental pain Postnasal drainage Headache Cough Signs Tenderness overlying the sinuses Dark circles beneath the eyes</td>
<td>Presumed AVRS unless symptoms last >10-14 d or are unusually severe (eg, fever with purulent nasal discharge, facial pain or tenderness, periorbital swelling)</td>
<td>Not required Plain radiography Nasal cultures Optional Nasal endoscopy Nasal cytology Nasal endoscopy/other imaging studies, if initial treatment unsuccessful</td>
</tr>
<tr>
<td>\textit{CPG:AS,}7 2007</td>
<td>3 cardinal symptoms Purulent nasal discharge (anterior, posterior, or both) accompanied by nasal obstruction, facial pain/pressure, or both</td>
<td>Presumed AVRS Symptoms present <10 d and are not worsening Presumed ABRs Symptoms persist ≥10 d beyond the onset of upper respiratory symptoms, worsen within 10 d of initial improvement, or are particularly severe in the first 3-4 d of illness</td>
<td>Not required Radiographic imaging (except in the event of a complication or if an alternative diagnosis is suspected) Nasal cultures Preferred CT (for evaluating complications of ARS)</td>
</tr>
</tbody>
</table>

a ABRS = acute bacterial RS; ARS = acute RS; AVRS = acute viral RS; CPG:AS = Clinical Practice Guideline: Adult Sinusitis; CT = computed tomography; \textit{EP3OS} = European Position Paper on Rhinosinusitis and Nasal Polyps 2007; \textit{JTFPP} = Joint Task Force on Practice Parameters; RI = Rhinosinusitis Initiative; RS = rhinosinusitis.

b These guidelines pertain to the diagnosis of ARS in clinical practice; clinical trial diagnostic requirements are more stringent.

c Cardinal symptoms of ABRs.
Acute RS is most commonly viral in origin (eg, the common cold). The incidence of acute viral RS (AVRS) is extremely high, estimated to occur from 2 to 5 times per year in an average adult. Secondary bacterial infection is thought to complicate only a very small percentage of cases (0.5%-2.0%).

Acute RS is most commonly viral in origin (eg, the common cold). The incidence of acute viral RS (AVRS) is extremely high, estimated to occur from 2 to 5 times per year in an average adult. Secondary bacterial infection is thought to complicate only a very small percentage of cases (0.5%-2.0%).

Viral vs Bacterial Etiology
Acute RS can generally be diagnosed adequately on the basis of clinical findings alone, without the use of special imaging techniques or other assessments. However, the consensus guidelines recognize particular situations in which special assessments may have a role. According to all the guidelines, plain radiography is neither useful nor cost-effective. Computed tomography is not recommended as part of the routine work-up but is mentioned by some guidelines (EP’OS and CPG:AS) as a preferred imaging option for cases characterized by severe disease, immunocompromised state, or suspected complications. The RI guidelines recommend CT before surgery and for evaluation of cases with recurrent ARS. The JTFPP asserts that radiographic assessment is generally unnecessary, but imaging studies (CT, not plain radiography) can be useful in certain situations to support the diagnosis or establish the degree of mucosal involvement. The BSACI guidelines recommend the use of CT but do not consider it a "primary investigation."

Special Assessments
Acute RS can generally be diagnosed adequately on the basis of clinical findings alone, without the use of special imaging techniques or other assessments. However, the consensus guidelines recognize particular situations in which special assessments may have a role. According to all the guidelines, plain radiography is neither useful nor cost-effective. Computed tomography is not recommended as part of the routine work-up but is mentioned by some guidelines (EP’OS and CPG:AS) as a preferred imaging option for cases characterized by severe disease, immunocompromised state, or suspected complications. The RI guidelines recommend CT before surgery and for evaluation of cases with recurrent ARS. The JTFPP asserts that radiographic assessment is generally unnecessary, but imaging studies (CT, not plain radiography) can be useful in certain situations to support the diagnosis or establish the degree of mucosal involvement. The BSACI guidelines recommend the use of CT but do not consider it a “primary investigation.”
cesses for the presence of purulence associated with ARS.12 However, it is not available to most primary care physicians. Aside from the BSACI, the guidelines are in agreement that nasal endoscopy is not essential for the diagnosis of ARS.8 The RI document states that nasal endoscopy might be indicated for evaluating cases refractory to empirical treatment, patients with unilateral disease without septal deviation, and patients with severe, disabling symptoms.9 The JTFFP guidelines suggest considering nasal endoscopy during the initial work-up or in cases of treatment failure.6

Nasal Culture. Nasal culture is not generally recommended for the routine work-up of uncomplicated ARS (JTFFP, CPG:AS, BSACI);6-8 however, the EP3OS guidelines5 consider it an option in the event of treatment failure or complications. The RI guidelines9 affirm that properly obtained endoscopic cultures can be useful to identify causative organisms in certain forms of RS.

Sinus Puncture. Although rarely indicated for routine patient care, sinus puncture is the methodology considered the criterion standard for confirming bacterial pathogens within the maxillary sinuses (EP3OS, JTFFP, CPG:AS, RI).4,6,7,9,13 As such, sinus puncture has most applicability in the clinical trial setting. However, the JTFFP mentions certain clinical situations that may warrant sinus puncture to obtain diagnostic cultures; for example, it may be useful in acute episodes that are refractory to treatment or for rapid and accurate identification of the causative organism in immunosuppressed patients.5 Sinus puncture is typically performed by inserting a large-bore needle into the maxillary sinus through the inferior meatus or canine fossa.9,14,15

MANAGEMENT OF ARS

The fundamental issue in determining appropriate treatment is identifying which ARS cases warrant antibiotics. Survey data confirm a remarkable overuse of antibiotics for ARS that is most likely viral rather than bacterial. Only an estimated 0.5\% to 2.0\% of ARS episodes have a bacterial etiology. In addition, the recent consensus documents discussed herein have reconsidered the appropriateness of antibiotic use for mild cases of presumed ABRS. Clinical studies have confirmed that roughly 60\% of presumed ABRS cases resolve spontaneously without antibiotics. Despite this compelling evidence indicating that antibiotics are overused, recent data from the United States and United Kingdom indicate that antibiotics are prescribed in 81\% to 92\% of ARS cases.16,17 Unnecessary prescribing of antibiotics adds to treatment costs, puts patients at risk of adverse events, and adds to the growing problem of antimicrobial resistance.

Evidence-based treatment recommendations from EP3OS, JTFFP, and CPG:AS are summarized in Table 3, along with their strength and level of evidence.4,6,7 The graded evidence-based recommendations from BSACI simply note that the use of topical corticosteroids or an antihistamine together with antibiotics is associated with more rapid symptom resolution, and this is given a grade of A; elsewhere it is noted that antibiotics should be reserved for severe symptoms, such as maxillary pain, swelling, and fever.8 Although the BSACI grading system is undefined, it appears similar to that used by the EP3OS guidelines (Table 3). The key features for evaluating antibiotic appropriateness should be symptom severity and duration. These 4 guidelines (all except BSACI) recommend antibiotics for any patient presenting with severe illness, and EP3OS, JTFFP, and CPG:AS recommend antibiotics for those who do not show improvement beyond given time points or for those whose symptoms worsen (see Table 3 for specific criteria). The EP3OS guidelines recommend no treatment other than symptomatic relief for at least the first 5 days because this is the “window” of time when AVRS is still the most likely diagnosis. If symptoms persist or increase beyond 5 days, moderate cases should first be prescribed intranasal corticosteroids, with antibiotics added if no improvement occurs after 14 days; severe cases qualify for initial combination therapy with intranasal corticosteroids plus antibiotics.4 The CPG:AS cautions that mucous color should not dictate antibiotic use because color relates to the presence of neutrophils, not bacteria.7 Clearly, the intent of these key recommendations is to reduce the use of antibiotics for cases of AVRS and mild ABRS.

“Watchful waiting” and symptomatic relief are generally recommended initially for cases not meeting the criteria for antibiotic intervention. 4,6-8 The EP3OS guidelines (Table 3) recommend no treatment other than symptomatic relief for at least the first 5 days because this is the “window” of time when AVRS is still the most likely diagnosis. If symptoms persist or increase beyond 5 days, moderate cases should first be prescribed intranasal corticosteroids, with antibiotics added if no improvement occurs after 14 days; severe cases qualify for initial combination therapy with intranasal corticosteroids plus antibiotics.4 The CPG:AS cautions that mucous color should not dictate antibiotic use because color relates to the presence of neutrophils, not bacteria.7 Clearly, the intent of these key recommendations is to reduce the use of antibiotics for cases of AVRS and mild ABRS.

DIAGNOSIS OF CRS

Despite a good deal of overlap between ARS and CRS with regard to individual symptoms, CRS is much more hetero-
<table>
<thead>
<tr>
<th>Guideline</th>
<th>Uncomplicated, presumed AVRS</th>
<th>ABRS</th>
<th>ARS in general</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPiOS.<sup>4</sup> 2007<sup>b,c</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate disease</td>
<td>Symptoms lasting <5 d or improving thereafter Relieve symptoms by using decongestants (Ib/D),<sup>16-21</sup> saline (Ib/D),<sup>22-23</sup> or analogies</td>
<td>Consider culture/imaging</td>
<td>Intra nasal corticosteroids (Ib/A)<sup>24-30</sup> Oral corticosteroids to reduce pain in severe disease (Ib/A)<sup>6,37,60,76</sup> Oral antihistamines only in allergic patients (Ib/B)<sup>13</sup> Decongestants (Ib/D)<sup>8,21</sup></td>
</tr>
<tr>
<td>Severe</td>
<td>Severe pain, temperature >38°C Add antibiotics (Ia/A)<sup>7,38</sup> and topical corticosteroids for 7-14 d (Ib/A)<sup>34-36</sup> (expect to see effect within 48 h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTFPP.<sup>6</sup> 2005</td>
<td>7-10 d course of “watchful waiting” (ungraded) Antibiotics are inappropriate and discouraged strongly (D)</td>
<td>Antibiotics</td>
<td>Intra nasal corticosteroids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary therapy (A) (Ia,<sup>39</sup> Ib,<sup>40</sup> IV,<sup>41</sup>) III,<sup>42</sup> IV,<sup>43</sup> Ib,<sup>44</sup> III,<sup>45</sup> Ib,<sup>46</sup> Ib,<sup>47</sup> Ib,<sup>48</sup>) 10-14 d course (D) Choice of agent based on likely bacterial pathogens consistent with clinical history Consider in patients with severe signs/symptoms at any time (worsening after 3-5 d, temperature >39°C, maxillary tooth/facial pain, unilateral sinus tenderness, periorbital swelling)<sup>30-49</sup></td>
<td>Modestly beneficial as adjunctive therapy with antibiotics in patients with recurrent disease (C) (III,<sup>49</sup> Ib,<sup>50</sup> III,<sup>51</sup> Ib,<sup>52</sup> IV,<sup>53</sup> III,<sup>54</sup> Ib,<sup>55</sup>)</td>
</tr>
<tr>
<td>CPG:AS.<sup>7</sup> 2007</td>
<td>Management is primarily symptomatic Analgesics Antipyretics Oral/topical decongestants Topical nasal corticosteroids (optional, B/D)<sup>35,56</sup></td>
<td></td>
<td>Topical corticosteroids Optional (B/C)<sup>35,36,70</sup> Nasal saline irrigation Optional (B)<sup>14,67-70</sup> Decongestants Optional (B/C)<sup>71-75</sup></td>
</tr>
</tbody>
</table>

^a ARBS = acute bacterial RS; ARS = acute RS; AVRS = acute viral RS; CPG:AS = Clinical Practice Guideline: Adult Sinusitis; EPiOS = European Position Paper on Rhinosinusitis and Nasal Polyps 2007; JTFPP = Joint Task Force on Practice Parameters; RCT = randomized clinical trial; RS = rhinosinusitis.

^b These guidelines did not distinguish between presumed and uncomplicated ARS and ABRS.

^c Strength of recommendation for EPiOS and JTFPP: A, directly based on category I evidence; B, directly based on category II evidence or extrapolated recommendation from category I evidence; C, directly based on category III evidence or extrapolated recommendation from category I or II evidence; D, directly based on category IV evidence or extrapolated recommendation from category I, II, or III evidence. Grades of recommendation and level of evidence in the EPiOS guidelines were provided for the use of therapies for ARS and/or its subtypes, not the order or duration of these therapies. Order and duration of therapy choices presented here are taken from the treatment algorithm found in the EPiOS guidelines. Categories of evidence for EPiOS and JTFPP: Ia, from meta-analysis of RCTs; Ib, from ≥1 RCT; Ila, from ≥1 controlled study without randomization; Iib, from ≥1 other type of quasieperimental study; III, from nonexperimental descriptive studies (eg, comparative studies, correlation studies, case-control studies); IV, from expert committee reports or opinions and clinical experience of respected authorities or both.

^d Strength of recommendation for CPG:AS: A strong recommendation means the benefits of the recommended approach clearly exceed the harms (or that the harms clearly exceed the benefits in the case of a strong negative recommendation) and that the quality of the supporting evidence is excellent (grade A or B). In some clearly identified circumstances, strong recommendations may be made on the basis of lesser evidence when high-quality evidence is impossible to obtain and the anticipated benefits strongly outweigh the harms. A recommendation means the benefits exceed the harms (or that the harms exceed the benefits in the case of a negative recommendation), but the quality of evidence is not as strong (grade B or C). In some clearly identified circumstances, recommenda
tions may be made on the basis of lesser evidence when high-quality evidence is impossible to obtain and the anticipated benefits outweigh the harms. Optional means either that the quality of evidence that exists is suspect (grade D) or that well-done studies (grade A or B) show little clear advantage to one approach vs another. No recommendation means that pertinent evidence is lacking (grade D) and that the balance between benefits and harms is unclear. Grades of Evidence for CPG:AS: A, well-designed RCTs or diagnostic studies performed on a population similar to the guideline’s target population; B, randomized controlled trials or diagnostic studies with minor limitations, overwhelmingly consistent evidence from observational studies; C, observational studies (case control and cohort design); D, expert opinion, case reports, reasoning from first principles (bench research or animal studies); X, exceptional situations in which validating studies cannot be performed and there is a clear preponderance of benefit over harm.
geneous. The greater complexity of CRS is exemplified by a lack of agreement among leading authorities as to the categorization of the disease. Of the 5 consensus guidelines, the RI group has proposed the most detailed subclassification scheme to date (Figure 2). In this scheme, the most important differentiating features are the presence or absence of the following: (1) NP, (2) eosinophilic or other inflammatory features, and (3) fungal hyphae in sinus mucus. Determination of inflammatory characteristics of the nasal mucosa requires evaluation of sinus tissue and/or sinus mucus. If such evaluations are not feasible in a clinical setting, the minimal recommended classification should at least differentiate between CRS with vs without NP. The proposed RI classification also takes into account other underlying or predisposing factors, such as mucus recirculation, humoral immune deficiency, abnormal mucociliary function, and allergic rhinitis (AR). The role of fungal involvement in CRS continues to be a focus of research and debate. Fungal allergy and the presence of fungal hyphae in eosinophil-laden mucus (known as **allergic mucin**) are key features identifying a small subset of cases of allergic fungal RS (AFRS). However, many more patients with CRS show immune hyperresponsiveness to fungi such as *Alternaria* species, as evidenced by increased cytokine expression independent of IgE levels, indicating that nonallergic mechanisms also play a role.

In contrast to ARS, CRS generally cannot be diagnosed on the basis of symptoms alone. In fact, the guidelines display a general similarity in outlining diagnostic parameters for CRS that combine symptom assessments with objective findings of some type. Objective evidence of chronic sinus disease helps to distinguish CRS from other possible causes of CRS-type symptoms, including neoplasm or other sources of headache or dental pain.

Cardinal Signs or Symptoms

Prolonged duration of RS symptoms (more than 8-12 weeks) is the primary reason to evaluate a patient for CRS. In this regard, it is important to distinguish CRS...
For personal use. Mass reproduce only with permission from Mayo Clinic Proceedings.
and fatigue.4 The EP3OS guidelines recommend evaluating the magnitude of symptom severity (mild, moderate, or severe), as discussed earlier for ARS, for purposes of treatment decisions.4

The RI, CPG:AS, and EP3OS guidelines are in relatively good agreement with regard to diagnostic symptom criteria. The RI guidelines5 stipulate the persistence for 12 or more weeks of at least 2 of 4 possible symptoms: (1) nasal congestion; (2) anterior or posterior mucopurulent drainage; (3) facial pain, pressure, or fullness; and (4) a decreased sense of smell. Facial pain, pressure, or fullness is relatively more common in CRS without NP, whereas a decreased sense of smell is more common in CRS with NP. The CPG:AS stipulates that, when present for 12 or more weeks, any 2 of the same 4 symptoms are diagnostic for CRS in general.7 The EP3OS and BSACI criteria are essentially the same as the CPG:AS, except that 1 of the hallmark symptoms must be either nasal discharge or nasal blockage and obstruction.4,8

Diagnostic Testing

In 4 guidelines, the importance of diagnostic testing is a key difference between CRS and ARS (Table 4).4,7 Some form of nasal airway examination is recommended by 4 of the guidelines (EP3OS, RI, CPG:AS, and BSACI) to establish a CRS diagnosis. Supportive findings include purulent mucus or edema in the middle meatus or ethmoid region; the presence or absence of NP can be established with examination.4,5,7 The JTFPP suggests that nasal endoscopy be considered in patients with CRS or ARS.6 The EP3OS, RI, CPG:AS, and BSACI guidelines preferentially support nasal endoscopy over anterior rhinoscopy, although anterior rhinoscopy is cited as a basic, preliminary evaluation tool.4,5,7 Nasal endoscopy allows better illumination and visualization of the posterior nasal cavity, nasopharynx, and sinus drainage pathways in the middle and superior meatus; it also allows delineation of nasal septal deviation, NP, and secretions in posterior regions. A 2010 study by Bhattacharyya and Lee78 found that addition of nasal endoscopy to symptom assessment substantially increased diagnostic accuracy in confirming the presence of CRS using sinus CT as the criterion standard. Nasal endoscopy can also facilitate the procurement of endoscopic cultures that are useful in guiding antibiotic selection in appropriate cases.5

All 5 guidelines acknowledge that CT has particular value in evaluating suspected CRS; however, it fails to achieve the status of a routine, first-line recommendation (Table 4). The RI guidelines state that CT is not essential to a diagnosis of CRS but should be strongly considered.5 The CPG:AS document requires objective documentation of inflammation, which can be achieved either by nasal endoscopy or CT.7 The EP3OS guidelines actually recommend against CT for primary care work-up of RS and characterize it as an optional work-up for ear, nose, and throat specialists.4

The JTFPP guidelines assert that imaging techniques (CT or magnetic resonance imaging) may be useful in confirming a diagnosis in patients with vague symptoms or if symptoms persist despite optimal medical treatment.6 A sinus CT may also be useful to identify structural abnormalities in the sinuses, bony erosion, or extrasinus involvement.7 Certain “benign” conditions can also cause extrasinus involvement, such as bony erosion and/or mucocele formation, which are found in some cases of AFRS.7 Such findings may require further evaluation by magnetic resonance imaging (EP3OS and CPG:AS).4,7 Magnetic resonance imaging, which provides an excellent display of the mucosa rather than the bony anatomy, may be particularly useful in distinguishing bacterial or viral inflammation from fungal concretions (RI).5

Plain radiography has no benefit in the work-up of suspected CRS. When radiographic imaging is desired, the consensus documents are consistent in their recommendation of CT as a preferred technique.

Allergy and Immunology Evaluation. The JTFPP document recommends that patients with recurrent RS or CRS be evaluated for underlying allergy.4 Allergy testing is cited as an optional work-up in the CPG:AS guidelines in cases of CRS or recurrent ARS, with skin testing being the preferred method.7 The EP3OS guidelines recommend questioning patients with regard to allergies and doing further testing in patients with a history of allergy.4 The RI provides in-depth review of the association between allergic disease and RS but makes no formal recommendation regarding when such testing should be implemented.5

As many as 60% of patients with CRS have substantial allergic sensitivities, primarily to perennial allergens, such as house dust mites, cockroaches, pet dander, and fungi.79 Presumably, management of concomitant AR might be expected to decrease the frequency of RS through a reduction in nasal mucosal swelling and inflammation adjacent to the sinus outflow tract. Unfortunately, despite the epidemiological data, evidence-based data to support this assumption are somewhat sparse, leading the CPG:AS guidelines to conclude that allergy testing could not be “strongly recommended” but should be considered optional.7 The BSACI guidelines recommend skin prick testing in all cases of RS; however, it is noted that results should be interpreted in light of clinical history.8 In our experience, it is not uncommon for patients with CRS to be referred for an allergy evaluation only after having undergone a surgical procedure without benefit. Because many of these patients have perennial allergies, they could have had a better response to medical management of CRS had their allergies been identified in advance of sinus surgery.
A suggested approach would be to evaluate any patient with CRS whose symptoms are not easily controlled by saline irrigations and intranasal medications for underlying allergies. This approach is especially recommended for patients who are being considered for sinus surgery.

The EP3OS, JTFPP, and CPG:AS guidelines recommend immunologic testing in patients with CRS or recurrent ARS in whom aggressive management has failed or who demonstrate recurrent or persistent purulent infections.4,6,7 An analysis of 79 radiographically confirmed cases of recurrent or refractory RS uncovered a diagnosis of common variable immunodeficiency in 10\% of patients and selective IgA deficiency in 6\%. Low titers of IgG, IgA, and IgM were noted in 18\%, 17\%, and 5\% of cases, respectively.80 Sinus symptoms are also highly prevalent among patients infected with the human immunodeficiency virus.81,82 Laboratory work-up might include quantitative immunoglobulin assays (IgG, IgA, IgM), specific antibody responses to tetanus toxoid and pneumococcal vaccines (both before and after immunization), and assessments of T-cell number and function.6,7

Special Testing for AFRS. Only the RI and BSACI guidelines outline diagnostic criteria specific to AFRS. For the RI, these include the presence of at least 1 CRS symptom, the presence of endoscopy-documented allergic mucin and inflammation, skin or blood tests positive for fungus-specific IgE, and no histologic evidence of invasive fungal disease.8 For the BSACI, these include the presence of CRS with NP; specific antifungal IgE; CT heterogeneity, expansion, or erosion; eosinophilic mucin without fungal invasion; and fungi in sinus contents.8

MANAGEMENT OF CRS

The lack of an overall consensus or a succinct algorithm for the treatment of CRS is due in large part to the paucity of controlled studies for this indication. The design and interpretation of CRS clinical trials have been hindered by the inherent heterogeneity of the disease, a lack of uniform definitions for the various subtypes, an incomplete understanding of the underlying pathologies, and a lack of useful and standardized clinical and laboratory end points to measure response to therapy.83 In 2006, for the first time, the FDA included CRS (without specifying subtypes) in its guidelines for RS studies84 and began to recognize the validity of some CRS studies. Regardless, it may take time to acquire a sufficient body of reliable clinical data for this indication. Although an FDA-approved treatment for NP (mometasone furoate nasal spray) is currently available, no treatments have been approved by the FDA for CRS.

The EP3OS guidelines put forth treatment recommendations for CRS, categorized into 3 major subtypes (a scheme also adopted in large part by the BSACI guidelines8): CRS without NP, CRS with NP, and AFRS. Recommendations are stratified according to disease severity, using a VAS scale of 0 (none) to 10 (most severe). Table 5 summarizes these recommendations along with the less detailed guidance provided by the JTFPP and CPG:AS; levels of evidence and strength of recommendation given by the various guidelines are indicated. Other therapeutic modalities were also graded by the EP3OS guidelines (including antifungal agents, bacterial lysates, mucolytics, and short-term antibiotics), but these were not judged by the EP3OS authors to have clinical relevance and thus are not presented in Table 5.

TREATMENT RECOMMENDATIONS BY EP3OS FOR CRS

CRS Without NP. Management of CRS without NP is divided into 2 categories. For mild symptoms (VAS score, 0-3), recommended initial management consists of intranasal corticosteroids along with nasal saline lavage. If the condition does not improve after 3 months, culture should be performed and long-term macrolide therapy instituted; CT may be useful at this stage. Lack of response to this strategy after another 3 months should prompt further CT evaluation and consideration of sinus surgery. In cases that do respond, ongoing follow-up is recommended, along with continued intranasal corticosteroid use and nasal saline lavage, with or without long-term macrolide therapy.9 For moderate or severe symptoms (VAS score, >3-10), initial management should include intranasal corticosteroids, nasal saline lavage, culture, and long-term macrolide therapy. If no response is seen after 3 months, further CT evaluation and surgical work-up are warranted. The EP3OS guidelines do not discuss how the results from sinus cultures might affect treatment.

The level of evidence assigned to some therapies by the EP3OS guidelines is open to debate. For instance, the recommendation for long-term macrolide therapy is based on a study by Ragab et al.101 which was graded as level Ib evidence (based on at least 1 randomized controlled trial). In this trial, patients randomly assigned to medical treatment with erythromycin, alkaline nasal irrigation, and intranasal corticosteroids were found to have symptom scores and endoscopic findings at 6 and 12 months that were not significantly different from scores seen in patients who underwent surgery.101 However, no sham surgery was performed on the medically treated patients, making it impossible to rule out a placebo effect. Patients who underwent surgery also received medical therapy with erythromycin, intranasal corticosteroids, and alkaline nasal irrigation, and medical therapy late in the study could be tailored to each patient’s symptoms, making it difficult to identify a true control group and thus to assess the value of any 1 therapy. These features are atypical for most randomized clinical trials.
The study by Wallwork et al.102 also cited as Ib evidence, was a randomized, placebo-controlled investigation of 150 mg of roxithromycin vs placebo. In this study, patients in the roxithromycin group showed a statistically significant change from baseline in the Sino-Nasal Outcome Test 20 (SNOT20) score at 12 weeks not seen in the placebo group. In a similar “change from baseline” analysis, the roxithromycin group also showed an improvement in saccharine transit time and nasal endoscopy not seen in the placebo group. However, the statistical analysis in this study was unconventional in that it evaluated the results of each study arm at study end against respective values at baseline rather than a more conventional comparison of the change from baseline in each arm using an analysis of covariance model.

Given this limitation, the efficacy of roxithromycin cannot be confirmed by the results of this study.

Studies cited by the EP'OS guidelines as evidence of the efficacy of nasal lavage for CRS with NP also merit a closer look. Bachmann et al.90 randomly assigned 40 patients to nasal irrigation with isotonic Ems salt solution or isotonic sodium chloride solution. Significant improvements from baseline in subjective and objective measurement were seen, but no significant difference was found between groups. No true control group was studied; as the authors noted, it is not possible to find a true placebo because any watery solution would remove secretions and crusts in the nose and produce therapeutic effect. Despite these drawbacks, this study is cited in the EP'OS guidelines as level Ib evidence.
The BSACI recommendations differ from the EP3OS evidence is given for the 3-month duration. The evidence base supporting the order and duration of therapies recommended by EP3OS is also unclear. For example, an initial 3-month course of intranasal corticosteroids is recommended for mild symptoms of CRS. The recommendation of intranasal corticosteroids for CRS is cited as level Ib evidence, but the studies cited ranged in duration from 11 days to 20 weeks. The utility of the therapy may be supported by level I evidence, but no evidence is given for the 3-month duration.

The BSACI recommendations differ from the EP3OS guidelines on the following points: the recommendation for surgery only for treatment failures and the grade A recommendation for long-term antibiotics were both based solely on the study by Ragab et al., and addition of antihistamines for allergic patients is given a grade A recommendation. Additionally, surgery is recommended for AFRS.

CRS With NP. The EP3OS guidelines for managing CRS with NP are generally similar to CRS without NP, with the notable exception that antibiotics are not recommended.

For symptoms of mild severity (VAS score, 0-3), treatment with an intranasal corticosteroid is recommended; if improvement is noted after 3 months, treatment should be continued with follow-up every 6 months. If no improvement is seen within 3 months, a short course of oral corticosteroids for 1 month is recommended. If that too is unsuccessful, CT is recommended, and the patient should be evaluated as a potential surgical candidate.

In cases of symptoms of moderate severity (VAS score, >3-7), topical corticosteroid drops are recommended initially for 3 months, with continued use and follow-up every 6 months thereafter if effective. If no improvement is seen after the initial 3 months, a short course of oral corticosteroids may be added for 1 month. If this strategy fails, CT is recommended, and the patient should be evaluated as a potential surgical candidate. If improvement is noted after the 1-month oral corticosteroid course, the patient can be switched back to topical corticosteroid drops.

Severe cases of CRS with NP (VAS score, >7-10) should initially be managed using a short course (1 month) of oral corticosteroids in combination with topical corticosteroids. If improvement occurs on this regimen alone, the patient may be switched to topical corticosteroids alone. Patients who do not initially show improvement should be evaluated via CT and considered for surgical intervention. After polypectomy, maintenance treatment with intranasal corticosteroids is generally recommended.

Again, the evidence on which EP3OS bases its recommendations for order and duration of therapies merits examination. For example, therapy with oral corticosteroids for CRS with polyps is cited as level Ib evidence on the basis of studies by Benitez et al. and Hisaria et al. Both are randomized controlled trials that found significant benefit for oral corticosteroids vs placebo, as seen in objective measures of polyp size and subjective assessment of symptoms; however, both involved 14-day courses of corticosteroids, so it is unclear what evidence contributed to the recommendation of a 1-month course. Further, it is unclear what evidence supports the choice of corticosteroid drops vs sprays at any given point; the evidence level is cited as Ib for topical corticosteroids, and the trials provided as evidence include evaluations of both drops and spray formulations.

In addition to largely adopting the EP3OS recommendations, the BSACI guidelines recommend corticosteroid drops specifically for NP, citing 2 randomized controlled trials that the EP3OS guidelines also cited in recommending “topical” corticosteroids. The addition of oral antihistamines for allergic patients with CRS is given a grade A recommendation, and the use of antileukotrienes is given a grade C recommendation but considered clinically relevant.

AFRS. The EP3OS guidelines do not present a detailed treatment algorithm for AFRS. Surgery is indicated as a first-line treatment, along with topical or systemic antifungal drugs.

Other Guidelines for CRS Management

The JTFPP and CPG:AS guidelines propose very general management strategies for CRS, with no categorization of subtypes by CRS with vs without NP or AFRS. The RI document does not provide specific treatment recommendations.

The JTFPP guidelines indicate that the role of antibiotics in CRS is controversial but that antibiotics may be required for acute exacerbations of CRS. Intranasal corticosteroids are suggested as being modestly beneficial in CRS as an adjunct to antibiotic therapy in cases of recurrent ARS or CRS. The JTFPP guidelines state that antihistamines may have a role in the treatment of CRS when AR is also present because AR and CRS cause overlapping symptoms and AR may predispose patients to the devel-
Continuing Research

Many issues remain to be addressed in the field of RS management, particularly CRS. An encouraging upsurge in the number of CRS-oriented investigational studies has occurred since publication of the most recent RS guidelines. Promising areas of investigation in CRS include studies of the role of bacterial biofilms, immune hyperresponsiveness to colonizing fungi, and defects in innate immunity in the initiation or persistence of CRS.

Many recent studies have been conducted in patients with CRS. Among the interventions being evaluated are topical antibiotic and antifungal agents, maxillary sinus irrigation, and good hand hygiene to prevent ARS. A recommendation is made to evaluate patients with CRS for the presence of contributory factors or other disease states that might complicate disease management (eg, AR, cystic fibrosis, immunodeficiency, ciliary dyskinesia, or anatomic variations).

Conclusion

Current consensus and evidence-based guidelines are in agreement with regard to the diagnosis and treatment of ARS. The efficacy of intranasal corticosteroids has been well established by clinical trial data, and all 4 guidelines with evidence-based treatment recommendations (EP3OS, JTFPP, CPG:AS, and BSACI) advise their use in ARS; these 4 guidelines also recommend antibiotics for patients presenting with severe ARS symptoms. An issue of great concern in ARS, in which most cases by far are viral and self-limiting, remains the continued high rate at which clinicians overprescribe antibiotics, a point on which the guidelines agree. However, although all the guidelines recognize symptom severity as a factor for determining when to use antibiotics, the means recommended for determining severity vary, from VAS in the EP3OS, BSACI, and RI guidelines to various possible scales in the CPG:AS guidelines to specific symptoms (eg, fever, purulent nasal discharge, facial pain or tenderness, and periorbital swelling) in the JTFPP guidelines. Thus, clinicians are presented with discordant guidance and must rely on clinical experience and judgment.

In contrast, consensus and evidence-based guidelines regarding CRS are much less congruent, possibly because of the greater complexity and heterogeneity of this condition and the paucity of clinical trials in this area. No overall consensus has been reached regarding treatment of CRS. The recommendations made by the EP3OS guidelines (and subsequently by the BSACI guidelines) for pharmacological treatment of CRS help fill a void in the literature but are sometimes lacking in rigorous evidence (eg, in their consideration of long-term use of macrolides). Few clinical trials have been conducted comparing the treatment of CRS without NP, CRS with NP, and AFRS as separate entities, although there has been a strong push to promote such trials. The guidelines also vary in their consideration of surgery, and one (CPG:AS) makes no recommendation whatsoever regarding surgery. Many questions remain regarding optimal patient selection and surgical strategies. Nevertheless, the publication of 5 consensus documents within the past 6 years is a very good sign, and substantial progress has been made toward consensus disease definitions and basic investigations in CRS. The detailed CRS subgroup...
classification scheme and diagnostic methods proposed by the RI may be particularly useful in this regard. The lack of category I evidence for therapeutic modalities for CRS and the lack of understanding of CRS pathophysiology are continuing issues. Future clinical research should establish appropriate diagnostic testing strategies to identify pathogenic factors (eg, allergic, infectious, fungal) and ascertain which treatments are most effective for each. As a practical matter, we consider allergy testing (as recommended by the JTFPP, EPOS, and BSACI guidelines) to be valuable for patients with long-standing or recurrent symptoms, especially when these symptoms are uncontrolled by topical saline and intranasal corticosteroids. Such testing is likely to play a part in forthcoming treatment strategies that are more closely directed to the underlying cause of CRS. It is hoped that the next generation of consensus guidelines will have a much greater knowledge base on which to draw to refine recommendations for practicing clinicians, with the ultimate goal of improving patient health outcomes.

We thank Karl Torbay, MD, and Rob Cooper, MPH, of Adelphi-Eden Health Communications for editorial assistance. This assistance was funded by Schering Corp, now Merck & Co.

REFERENCES

For personal use. Mass reproduce only with permission from Mayo Clinic Proceedings.
35. Gehanno P, Beauvillain C, Bobin S, et al. Short therapy with amoxicil-
lin-clavulanate and corticosteroids in acute sinusitis: results of a multicentre

36. Klosek JM, Desmonts-Gohler C, Deslandes B, et al. Treatment of
functional signs of acute maxillary rhinosinusitis in adults: efficacy and
tolerance of administration of oral prednisone for 3 days [article in French]. *Presse

in the treatment of acute sinusitis in patients with allergic rhinitis. *Allergy.*

38. Sinus and Allergy Health Partnership. Antimicrobial treatment
2000;123(suppl):S1-S32.

39. American Academy of Pediatrics; Subcommittee on the Management
of Sinusitis and Committee on Quality Improvement. Clinical practice guide-

40. Hickner JM, Bartlett JG, Besser RE, et al. Principles of appropriate an-

41. Benninger MS, Sedory-Holzer SE, Lau J. Diagnosis and treatment of
uncomplicated acute bacterial rhinosinusitis: summary of the Agency for
Health Care Policy and Research evidence-based report. *Otolaryngol Head

42. Spector SL, Bernstein IL, Li JT, et al; Joint Task Force on Practice Pa-
rameters. Parameters for the diagnosis and management of sinusitis. *J Allergy

43. Wald ER, Mason EO Jr, Bradley JS, Barson WJ, Kaplan SL, US Pediat-
ric Multicenter Pneumococcal Surveillance Group. Acute otitis media caused

PC. Susceptibilities of Streptococcus pneumoniae and Haemophilus influenzae
to 10 oral antimicrobial agents based on pharmacodynamic parameters: 1997

45. de Ferranti SD, Ioannidis JP, Lau J, et al. Are amoxicillin and folate
inhibitors as effective as other antibiotics for acute sinusitis? a meta-analysis.

46. Hoban DJ, Doern GV, Fluic AT, Roussel-Delaréde M, Jones RN. World-
wide prevalence of antimicrobial resistance in Streptococcus pneumoniae,
Haemophilus influenzae and Moraxella catarrhalis in the SENTRY Anti-
2):S81-S93.

axetil and amoxicillin/clavulanate in the treatment of patients with acute bacte-

ness and safety of cefdinir and amoxicillin/clavulanate in treatment of acute
1997;41(12):1517-1520.

49. Clark JP, Langston E. Ketolides: a new class of antibacterial agents for
treatment of community-acquired respiratory tract infections in a primary care

nasal antigen challenge: effects of topical corticosteroid pretreatment. *J Allergy

51. Phippom U, Proud D, Lichtenstein LL, et al. Inhibition of mediator re-
lease in allergic rhinitis by pretreatment with topical glucocorticosteroids. *N

52. Baroody FM, Cruz AA, Lichtenstein LL, et al. Intranasal beclome-
thasone dipropionate nasal spray: regular versus “as required” use in the treat-

54. Juniper EF, Guyatt GH, O’Byrne PM, Viveiros M. Aqueous beclome-
thasone dipropionate nasal spray: regular versus “as required” use in the treat-

55. Malm L. Pharmacological background to decongesting and anti-inflam-
matory treatment of rhinitis and sinusitis. *Acta Otolaryngol Suppl.* 1994;515:
53-55.

2011.