“As The Present Now Will Later Be Past…”

Living Donor Liver Transplantation & The Piggy-back Technique

Joseph DiNorcia, MD
Assistant Professor of Surgery
Division of Liver, Pancreas, and Intestine Transplantation
David Geffen School of Medicine at UCLA

Outline

• Living Donor Liver Transplantation (LDLT)
• Implantation Techniques
• Care of recipients of LDLT
• Care of liver donors

What is living donor liver transplantation?
LDLT

- Donor: health
- Recipient: disease
- Adult-to-child
- Adult-to-adult

History

- 1967
 - Thomas E. Starzl.
 - First.

- 1980s
 - Success & acceptance of liver transplant
 - DEMAND (EXPONENTIAL) ≠ SUPPLY (MINIMAL)
• Pediatric patients
 – Shortage
 – Size mismatch

• Reduced-size deceased donor liver grafts
 – 1984, H. Blumuth, France
 – 1988, C. Broelsch, US

• Split deceased donor liver grafts
 – Ex vivo
 • 1984, R. Pichlmayr, Germany
 • 1990, C. Broelsch, US
 – In situ
 • 1995, X. Rogiers, Germany
 • 1997, J. Gos, UCLA

History

• 1988, São Paulo, Brazil

 • Donor
 – 23-year-old mother
 – Left lateral segment graft

 • Recipient
 – 4-year-old daughter
 – Biliary atresia

History

• 1989, Brisbane, Australia

 • Donor
 – 29-year-old mother
 – Left lateral segment graft

 • Recipient
 – 17-month-old son
 – Biliary atresia
History

1993, Niigata, Japan
- Y. Hashikura, M. Makuuchi, et al.
 Donor
 - 25-year-old son
 - Left hepatic lobe graft
 Recipient
 - 53-year-old mother
 - Primary biliary cirrhosis

1996, Hong Kong, China
- C.M. Lo, S.T. Fan et al.
 Donor
 - 30-year-old brother (74kg)
 - Right hepatic lobe graft (w/ MHV)
 Recipient
 - 28-year-old brother (90kg)
 - Fulminant Wilson’s disease

117th American Surgical Association
- Quebec, Canada, April, 1997

Discussion
History: US

- Adult-to-child
 - 1991, C. Broelsch, University of Chicago
 - 1993, R. Busuttil, UCLA

History: US

- Adult-to-adult
 - 1998, M. Wachs, University of Colorado
 - 2 right hepatic lobe grafts (w/o MHV)
 - 1999, A. Marcos, Medical College of Virginia
 - 25 right hepatic lobe grafts (w/o MHV)
 - 1999, R. Busuttil, UCLA

Today

- 74 countries perform liver transplant
- 27,759 liver transplants in 2015
 - 21% LDLT
- 84,357 kidney transplants in 2015
 - 42% LDKT
“East” and “West”

- **East**
 - HBV, HCV, & HCC
 - Cultural, Religious, Societal Beliefs
 - LDLT > DDLT

- **West**
 - Brain death laws
 - Promotion and organization of deceased donors
 - DDLT > LDLT

LDLT 2016

<table>
<thead>
<tr>
<th>West</th>
<th>Middle East</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Egypt 100%</td>
<td>Taiwan >90%</td>
</tr>
<tr>
<td>Canada</td>
<td>Turkey 72%</td>
<td>India >90%</td>
</tr>
<tr>
<td>Brazil</td>
<td>Saudi Arabia 67%</td>
<td>Japan >85%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Korea 67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hong Kong 50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>China 18%</td>
</tr>
</tbody>
</table>

US: LDLT

<table>
<thead>
<tr>
<th>Year</th>
<th>Donor Source</th>
<th>Living Donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>4,866</td>
<td>360</td>
</tr>
<tr>
<td>2014</td>
<td>6,402</td>
<td>300</td>
</tr>
<tr>
<td>2013</td>
<td>2,896</td>
<td>141</td>
</tr>
<tr>
<td>2012</td>
<td>2,711</td>
<td>131</td>
</tr>
<tr>
<td>2011</td>
<td>2,143</td>
<td>131</td>
</tr>
<tr>
<td>2010</td>
<td>1,745</td>
<td>131</td>
</tr>
</tbody>
</table>

4.8% in 2017
Perspective

- 2016
 - United States
 - 23 DDLT per million
 - 1 LDLT per million
 - South Korea
 - 9 DDLT per million
 - 19 LDLT per million

Current Statistics in US

- Despite well-organized deceased donation
- 15,000 patients on the waitlist
 - Waitlist mortality is about 20%
- Liver allocation by MELD
 - "Sickest first"
- It works, but misses patients with low MELD scores and significant complications of cirrhosis

US 2017: Adult-to-Child LDLT

- 11
- 9
- 6
- 6
- 17 other centers
US 2017: Adult-to-Adult LDLT

- University of Pittsburgh • 60
- UCSF Transplant • 29
- Mayo Clinic • 26
- University of Colorado Hospital • 16
- NewYork-Presbyterian • 14
- 28 other centers

Which Recipient?

- Pediatric
 - Nearly all
 - Cholestatic, metabolic, & fulminant liver diseases

- Adult
 - Low MELD
 - Complications of cirrhosis
 - Complications of cholestatic liver disease
 - Hepatocellular carcinoma

When DDLT is not immediately available, LDLT can be considered for most patients early in the course of the transplant evaluation.
Which Donor?

<table>
<thead>
<tr>
<th>Step</th>
<th>Psychosocial</th>
<th>Medical</th>
<th>Surgical</th>
<th>Informed consent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Evaluation and social work with potential donor</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Schedule donor by evaluating donor's medical and psychosocial information, and review for psychosocial fitness</td>
</tr>
<tr>
<td>3</td>
<td>Consent and evaluation donor</td>
<td>Schedule for surgery, notification to recipient and family, and obtaining informed consent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Schedule operation for potential donor after completion of evaluation and review</td>
</tr>
</tbody>
</table>

Reasons for Non-Acceptance

<table>
<thead>
<tr>
<th>Reason for non-acceptance</th>
<th>Number of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor-related reasons</td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td>13 (13%)</td>
</tr>
<tr>
<td>Anatomical</td>
<td>15 (15%)</td>
</tr>
<tr>
<td>Liver function</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>Donor declined</td>
<td>56 (56%)</td>
</tr>
<tr>
<td>Psychosocial</td>
<td>55 (55%)</td>
</tr>
<tr>
<td>Recipient-related reasons</td>
<td></td>
</tr>
<tr>
<td>Resuscitated ODEG</td>
<td>21 (21%)</td>
</tr>
<tr>
<td>Death</td>
<td>24 (24%)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>19 (19%)</td>
</tr>
<tr>
<td>Condition improved</td>
<td>6 (6%)</td>
</tr>
<tr>
<td>Condition-related reduced organs</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (3%)</td>
</tr>
</tbody>
</table>

Safety for Both Donor and Recipient

- Center experience >20 cases
- Donor age <40 years
- Donor BMI <30
- Donor macrosteatosis <10%
- Donor remnant liver mass >30%
- (Experienced centers push the limits)
The Operations

- Two experienced surgical teams
- Simultaneous OR
- Orchestrated, step-by-step
 - Recipient hepatectomy
 - Donor hepatectomy
- Communication
 - Coordinate progress
 - Review anatomy
 - Avoid orphan grafts

Adult-to-Child
Adult-to-Adult

1. Adequate graft volume
2. Sufficient inflow
 - PV
 - HA
3. Excellent outflow
 - HV
4. Secure biliary reconstruction

Technically Successful LDLT
Donor-Recipient Graft Matching

• Adult-to-child
 – Graft mass about 1-5% of recipient
 – 10:1 DRWR
 – 60 kg donor for 6 kg baby

• Adult-to-adult
 – Donor needs:
 • 70% hepatectomy maximum!
 • ≥30% remnant
 – Recipient needs:
 • ≥0.8% GRWR
 • 70 kg recipient needs ≥560 g graft

Volumetrics

Results
Adult-to-Child

- Adult-to-Adult Living Donor Liver Transplantation (A2ALL)
 - 2002 established by NIH
 - 9 liver transplant centers
 - 14-year retrospective and prospective study
 - 1136 LDLT, 464 DDLT (who had at least 1 donor)
 - 30+ publications
- Donor and recipient LDLT outcomes

Adult-to-Adult

- Adult-to-Adult Living Donor Liver Transplantation (A2ALL)
 - 2002 established by NIH
 - 9 liver transplant centers
 - 14-year retrospective and prospective study
 - 1136 LDLT, 464 DDLT (who had at least 1 donor)
 - 30+ publications
 - Donor and recipient LDLT outcomes

Recipient Morbidity

- After the 20th case “learning curve”
- Hepatic artery thrombosis
 - 8% LDLT
 - 4% DDLT
- Biliary complications
 - 40% LDLT
 - 25% DDLT
- Overall complications equivalent
 - Time to resolution equivalent
- Re-transplant or death equivalent
Recipient Outcomes

• Compared to undergoing or awaiting DDLT:
 – Decrease in mortality
 • 44% (all cases)
 • 65% (after the ‘learning curve’)
 – Superior survival
 • Highly statistically significant
 • Durable 10 years after transplant
 • Even for lower MELD scores
 – Improves liver graft utility
 • Younger recipients
 • Before disease progression
 – Renal dysfunction
 – Sarcopenia
 – Life support

Donor Safety

• Management of donor risk is paramount

• Counseling potential donors requires comprehensive understanding of the available data on morbidity and mortality

• Informed consent!
Donor Outcomes

- Donor hepatectomy = major operation
- Potential for major morbidity and mortality
- A2ALL 760 donors
 - Overall morbidity = 40%
 • Multiple complications 19%
 • Serious complications 1.1%
 • Complete resolution in 1 year 95%
 - Overall mortality = 0.4%

CLINICAL—LIVER

Estimates of Early Death, Acute Liver Failure, and Long-term Mortality Among Live Liver Donors

- 4,111 donors
- 7 early deaths
- 0.17% risk of mortality
- Risk did not vary in:
 - Adult-to-child or adult-to-adult
 - Portion of liver donated

Long-Term Medical and Psychosocial Outcomes in Living Liver Donors

- 2016 literature review
- Living liver donors
- Outcomes
 - Medical
 - Psychosocial
Donor: Medical

- Estimated risk of mortality = 0.15%-0.50%
 - Highest risk in the first 90 days
- Average risk of complications = 15%-25%
 - 40% risk in adult-to-adult
- Risk of near-miss events = 1%
- One year post-donation:
 - Lab abnormalities normalize (except platelets)
 - Liver remnant regeneration complete

Donor: Psychosocial

- Majority (>90%) do not regret donation
- HR-QOL meet or exceed general population
- Improved relationship with recipient
- Donation-specific challenges:
 - Lingering physical symptoms (~1/3)
 - Financial burdens (~1/3)
 - Depression or anxiety exacerbation (~1/4)

Innovation

- 2001, S. Lee, Korea
 - Dual grafts
- 2002, D. Cherqui, France
 - Laparoscopic donor LLS
- 2004, N. Jabbour, US
 - Jehovah’s Witness
- 2008, S. Lee, Korea
 - Donor exchange
- 2013, B. Samstein (US), O. Soubrane (France)
 - Laparoscopic donor hepatic lobectomy
LDLT Conclusions

• Important, underutilized gift of life
• Proven transplantation option
• Strategy to address the organ shortage
• Lower waitlist suffering and mortality
• Equivalent or better survival than DDLT

Implantation Techniques

• Standard (bi-caval)
• Piggy-back (cavo-cavostomy)
Standard Hepatectomy

- Clamp both suprahepatic and infrahepatic IVC
- Retrohepatic caval resection

Veno-venous Bypass
Standard Implantation

Piggy-back Hepatectomy

- Preserve recipient vena cava
- Clamp hepatic veins and anterior vena cava
Piggy-back Implantation

A B
Advantages

- Greater hemodynamic stability
 - Preserve venous return to the heart
 - Preserve venous drainage of the kidneys
 - Avoid veno-venous bypass
 - The trauma!
 - The aftermath!
- Shorter warm ischemic time
 - One caval anastomosis in more favorable orientation
- Shorter anhepatic phase
- Less blood loss
- Fewer transfusions

Advantages

- Less RP dissection
 - Less bleeding
 - No RP closure
 - Large livers
 - No Gore-Tex!

Advantages

- Less postoperative renal dysfunction
- Shorter ICU length of stay
- Decreased costs
Advantages

- Living donor liver transplantation
- Split liver transplantation
- Re-transplantation
- Donor-recipient cava size mismatch
- Complex hepatobiliary surgery

Challenges

- Longer hepatectomy?
- Hepatic vein outflow obstruction?
- Enlarged caudate lobe?
- Fulminant liver failure?
- Budd-Chiari syndrome
- Juxtacaval malignancy

Data?

- Cochrane review 2011
 - 2 randomized trials (106 patients, 53 piggy-back)
 - Standard with VVB compared to piggy-back
 - Bias
 - Data do not recommend or refute piggy-back

Implantation Conclusions

• Case by case evaluation

• Proficiency in all techniques

• Requirement for living donor and split liver transplantation

Care of LDLT Recipient

• Healthier recipients (low MELD)

• Treat as a healthy liver transplant recipient, but with high index of suspicion!

• Understand the graft anatomy
Care of LDLT Recipient

- Smaller liver volume
 - Avoid volume overload
 - Early nutrition
 - Phosphorus repletion

- Smaller vasculature
 - Liver ultrasound POD#1 and PRN
 - Anti-coagulation PRN
 - Anti-platelet PRN

- Smaller bile duct(s)
 - Ursodiol
 - Two drains: 1. Biliary reconstruction & 2. Cut surface
 - HIDA

Care of LDLT Recipient

- Slower graft function
 - INR
 - Total bilirubin
 - Lower initial tacrolimus doses
 - Patience!

- Small-for-Size Syndrome
 - Octreotide
 - Splenic artery embolization

Care of Liver Donors

- Healthy patients!

- Treat as healthy, but with high index of suspicion!

- Understand liver remnant anatomy
Care of Liver Donors

- Analgesia
 - Epidural or PCA
 - Toradol ok
- One JP drain by cut surface
- Minimal labs
 - Phosphorus repletion
- Prophylaxis
 - Early ambulation, SCD, heparin/Lovenox, IS
- Facilitate visiting the recipient

Conclusion

- Global human crisis → global collaboration
- Build on past experience
- Challenge standard concepts
- Courage, creativity, & resilience
- Family, friends, loved ones, and strangers
- Rich history-in-the-making
- Leadership, innovation, and research
- Transplantation!
“For the times they are a-changin’.”

~Bob Dylan, 1963

Thank you