

Predictors of Hypertensive Disorders of Pregnancy Among Patients with Inflammatory Bowel Disease

Geffen School of Medicine at University of California, Los Angeles (UCLA)

Background

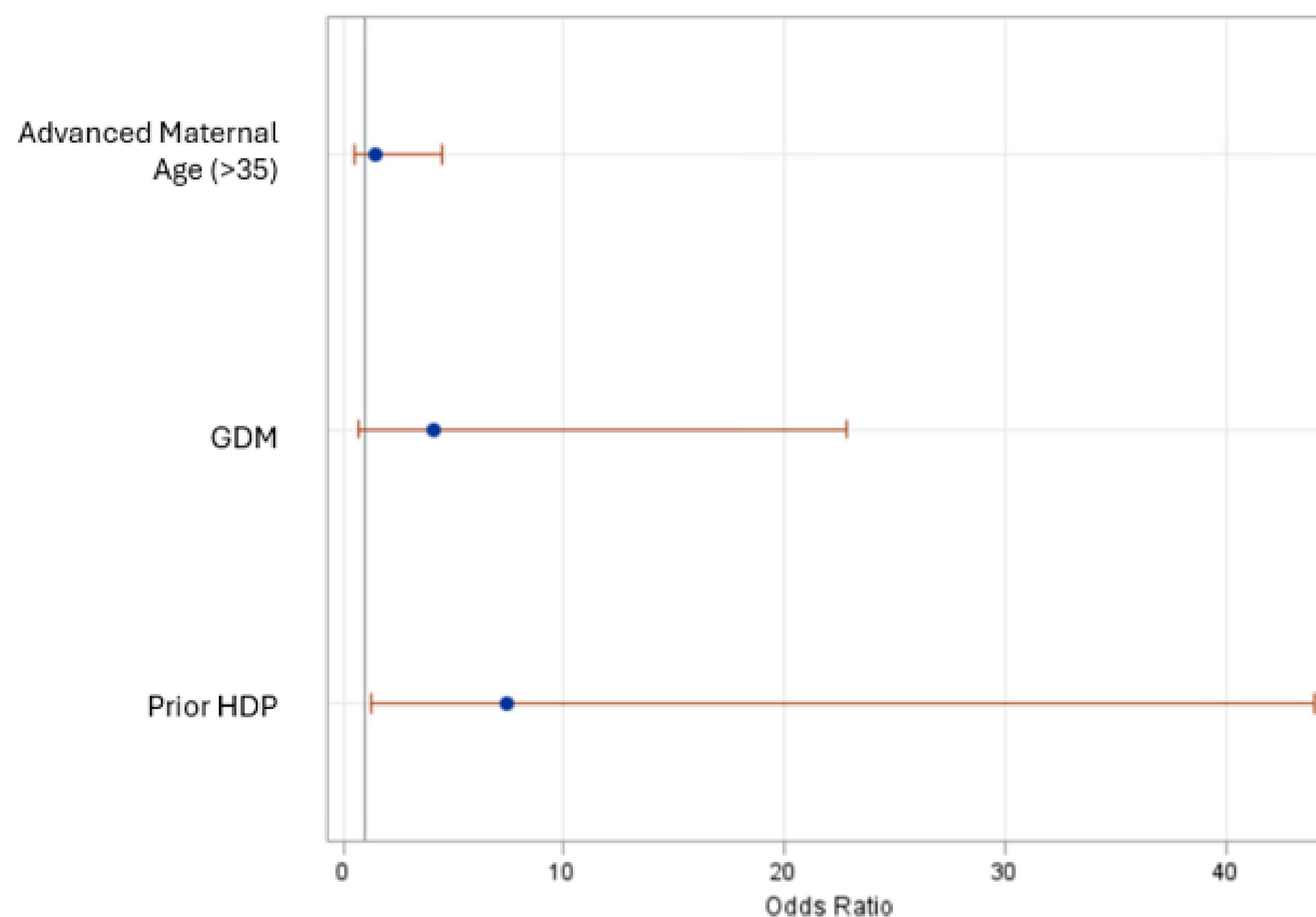
- Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), affected about 6.8 million people around the world in 2017¹ with prevalence continuing to rise worldwide².
- Patients with IBD are advised to avoid non-steroidal anti-inflammatory drugs (NSAIDs) because NSAID use can damage small intestine mucosa and exacerbate IBD activity^{3,4}.
- In pregnancy, patients with IBD are at higher risk of developing severe preeclampsia⁵ and, despite typical NSAID avoidance, they are advised to start daily low dose aspirin in the second trimester for preeclampsia prophylaxis^{6,7}.
- **Objectives:**
 - Investigate predictors of hypertensive disorders of pregnancy (HDP) in patients with inflammatory bowel disease (IBD)
 - Evaluate the rate of use of low-dose aspirin (LDA) prophylaxis in patients with IBD.
- **Hypothesis:**
 - Medical co-morbidities were often present and associated with high rates of preeclampsia.
 - LDA was underutilized in this vulnerable population.

Methods

- **Study design:** Retrospective cohort study at a single academic center from 1/1/2019 to 12/31/2023 consisting of 100 singleton deliveries among patients with IBD
- **Primary outcome:** Development of HDP, including gestational hypertension or preeclampsia
- **Secondary outcomes:** LDA use, pregnancy outcomes, and IBD disease activity
- **Statistical analysis:** Kruskal-Wallis test or the Chi-squared test. Multivariate logistic regression was used to identify independent predictors of HDP.

To see other research from our department, please use the QR code to the left. Otherwise, email WeiruiXiao@mednet.ucla.edu with any questions.

approximately 1 in 5 patients in our cohort developed hypertensive disorders of pregnancy. Despite elevated risk, LDA prophylaxis appeared underutilized (only used in 16% of our patient population).


previous history of HDP and gestational diabetes were more common in patients with IBD who developed HPD.

1 Demographics, medical co-morbidities, and IBD disease status by status of hypertensive diseases of pregnancy (N=100)

	Hypertensive Disorder of Pregnancy		P-value
	No (N=78)	Yes (N=22)	
(years) at delivery, Mean (SD)	33.9 (4.1)	36.3 (5.1)	0.06 ¹
parity, n (%)	36 (46.2%)	6 (27.3%)	0.11 ²
White, n (%)			0.63 ²
White	41 (52.6%)	14 (63.6%)	
Latino	12 (15.4%)	4 (18.2%)	
Asian	6 (7.7%)	2 (9.1%)	
Black	3 (3.8%)	0 (0.0%)	
Other	16 (20.5%)	2 (9.1%)	
Pregnancy Obesity, n (%)	17 (21.8%)	7 (31.8%)	0.33 ²
HA Days, Mean (SD)	78.7 (9.5)	81.2 (7.4)	0.16 ¹
HA Fetal Fraction, Mean (SD)	10.3 (3.8)	8.0 (2.5)	0.01 ¹
History of chronic HTN, n (%)	2 (2.6%)	1 (4.5%)	0.63 ²
History of HDP, n (%)	2 (2.6%)	5 (22.7%)	<.01 ²
Smoking, n (%)	11 (14.1%)	5 (22.7%)	0.33 ²
In vitro fertilization, n (%)	7 (9.1%)	5 (22.7%)	0.08 ²
Ever smoking, n (%)			0.34 ²
Ever smoking	1 (1.3%)	0 (0.0%)	
Ever smoking	6 (7.9%)	0 (0.0%)	
Ever smoking	69 (90.8%)	22 (100.0%)	
Diabetes diagnosis, n (%)			0.52 ²
Diabetes diagnosis	27 (34.6%)	6 (27.3%)	
Diabetes diagnosis	51 (65.4%)	16 (72.7%)	
Medical Remission at conception, n (%)	67 (85.9%)	19 (86.4%)	0.86 ²
Maternal Diabetes, n (%)	3 (3.8%)	4 (18.2%)	0.02 ²

¹Kruskal-Wallis p-value; ²Chi-Square p-value;

Figure 1. Multivariate analysis for predictors of hypertensive disorders of pregnancy (N=100)
 Odds Ratios for HDP Risk Factors

After multivariate analysis was performed, the only significant predictor of developing HDP was **previous history of HDP**.

Table 2 Pregnancy outcomes by status of hypertensive diseases of pregnancy (N=100)

		Hypertensive Disorder of Pregnancy		P-value
		No (N=78)	Yes (N=22)	
Preterm labor or PROM, n (%)		0 (0.0%)	5 (22.7%)	<.01 ²
Maternal Length of Stay, Mean (SD)		2.6 (1.3)	3.5 (1.4)	<.01 ¹
Delivery Method, n (%)				0.05 ²
Vaginal		59 (75.6%)	12 (54.5%)	
Cesarean		19 (24.4%)	10 (45.5%)	
Postpartum hemorrhage, n (%)		7 (9.0%)	4 (18.2%)	0.22 ²
Chorioamnionitis or endometritis, n (%)		6 (7.7%)	3 (13.6%)	0.39 ²
Birthweight (grams), Mean (SD)		3393.0 (526.4)	3099.3 (478.4)	<.01 ¹
Birthweight < 10th percentile, n (%)		7 (9.0%)	1 (4.5%)	0.50 ²
NICU Admission, n (%)		5 (6.5%)	2 (9.1%)	0.68 ²

¹Kruskal-Wallis p-value; ²Chi-Square p-value

- **Limitations:** Small sample population, low incidence of other possible risk factors.
- **Next step:** Further studies to determine the risk-benefit ratio of LDA use in pregnancies with IBD.

References

1. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet Gastroenterol Hepatol*. Jan 2020;5(1):17-30. doi:10.1016/s2468-1253(19)30333-4
2. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. *Lancet*. Dec 23 2017;390(10114):2769-2778. doi:10.1016/s0140-6736(17)32448-0
3. Lichtenstein GR, Loftus EV, Afzali A, et al. ACG Clinical Guideline: Management of Crohn's Disease in Adults. *Am J Gastroenterol*. Jun 3 2025;120(6):1225-1264. doi:10.14309/ajg.0000000000003465
4. Rubin DT, Ananthakrishnan AN, Siegel CA, Barnes EL, Long MD. ACG Clinical Guideline Update: Ulcerative Colitis in Adults. *Am J Gastroenterol*. Jun 3 2025;120(6):1187-1224. doi:10.14309/ajg.0000000000003463
5. Boyd HA, Basit S, Harpsøe MC, Wohlfahrt J, Jess T. Inflammatory Bowel Disease and Risk of Adverse Pregnancy Outcomes. *PLoS One*. 2015;10(6):e0129567. doi:10.1371/journal.pone.0129567
6. Shmidt E, Dubinsky MC. Inflammatory Bowel Disease and Pregnancy. *Official journal of the American College of Gastroenterology | ACG*. 2022;117(10S):60-68. doi:10.14309/ajg.0000000000001963
7. Mahadevan U, Robinson C, Bernasko N, et al. Inflammatory Bowel Disease in Pregnancy Clinical Care Pathway: A Report From the American Gastroenterological Association IBD Parenthood Project Working Group. *Am J Obstet Gynecol*. Apr 2019;220(4):308-323. doi:10.1016/j.ajog.2019.02.027
8. Memel Z, Yu A, Fenton C, et al. The Effect of Low-Dose Aspirin on Disease Activity in Pregnant Individuals With Inflammatory Bowel Disease. *Am J Gastroenterol*. Nov 1 2025;120(11):2603-2610. doi:10.14309/ajg.0000000000003304
9. Yang Y, Wu N. Gestational Diabetes Mellitus and Preeclampsia: Correlation and Influencing Factors. *Front Cardiovasc Med*. 2022;9:831297. doi:10.3389/fcvm.2022.831297