How to Choose an Optimal Spatial Technology from Six Available Options at TCGB

Xinmin Li, Ph.D., CLSp(MB), MB^{CM}

Department of Pathology & Laboratory Medicine
David Geffen School of Medicine
University of California at Los Angeles
650 Charles Young Dr
Los Angeles, CA 90095

https://www.uclahealth.org/pathology/tcgb

Commercially Available Single Cell Sequencing Technologies

- > 10X Genomics single cell system
- > BD Rhapsody single cell system
- Parse Biosciences single cell platform
- Scale Biosciences single cell platform
- Mission Bio single cell system

10X Chromium IX

BD Rhapsody™ System

Parse/Scale Bioscience

Tapestri

Three Major Single Cell Technologies Available at TCGB/JCCC GSR

10X Genomics

- Gold standard
- Comprehensive & Robust assays
- New product: GEM-X

BD Rhapsody

- known # of cells captured before seq
- Good for delicate cells
- Capturing >50K cells/sample

Scale Bio

- No instrument (cell itself as a barrier)
- High throughput
- Unique methy assay

Commercially Available Spatial Genomics Technologies

Two Types of Spatial Genomics Technologies

Imaging -based

- ➤ Molecular Cartography (Resolve Bios.)
- ➤ MERSCOPE (Vizgen)
- > Xenium (10X genomics)
- CosMx SMI (Nanostring)

Sequencing-based

- ➤ 10X Visum (10X genomics)
- ➤ GeoMx DSP (Nanostring)
- ➤ Curio Seeker (Curio Bioscience)
- Visium HD (10X Genomics)
- Stereo-seq (STOmics)

Six Spatial Technologies Available at TCGB

10X Xenium

CosMx SMI

Classified into Three Groups based on Resolution and Content

Comparisons within and across the Groups

G1: 10X Visium vs GeoMx DSP

GeoMx

10X Visium

Human & Mouse only

- Scan 36X14mm and sequencing selected ROI regions only
- More samples or single large section with scattered cells of interest/slide
- Relatively low
- Focused study with known cells of interest

Any species (fresh tissue for V1 kit)

Scan & sequencing entire 6.5X6.5mm

2 or 4 samples/slide

Higher sensitivity & resolution

Discovery purpose without

pre-knowledge of cells of interest

Recommend a minimum of 50-100 cells per ROI. The largest ROI area that you can image is 660um x 785um

#=

G2: 10X Visium HD vs Stereoseq

10X Visium HD

Stereoseq

- ➤ Human & Mouse only
- > FFPE tissue
- Capturing size: 6.5X6.5mm
- > Feature size: 2um

- ➤ Data output: 8X8um
- ➤ Single cell scale

Any species

Fresh frozen tissue

10X10mm, 20X30mm, 130X130mm

0.2um

Bins as needed

Single cell resolution

Note: Trade off between resolution and # of gene detected

G3: 10X Xenium vs CosMx SMI

10X Xenium

CosMx SMI

- > RNA only
- > 247-379 genes, 480 transcripts (1-100 custom genes)
- ➤ Scanning time: 2-3 days
- > Hands-on time: over 3 days
- > High specificity and sensitivity

RNA and 64 proteins

1000 and 6000 genes (7- to 200 custom genes)

3-7 days

over 2 days

Low specificity and sensitivity

Comparisons across the Groups

G1 G2 G3 **Visium HD** Stereoseq 10X 10X Visium Xenium Spot size 220 nm arid of 2 x 2 µm barcoded s binned to 8 x 8 µm GeoMx CosMx 500 nm Center to center **DSP** SMI

WTA + Protein panel at around 50um resolution

WTA at single cell scale, 2x2um feature size, 8x8um Bin

WTA at subcellular Resolution, 0.2um feature size, 0.2x0.2um Bin Gene panels+ protein at single cell resolution CosMx: 1000 and 6000 genes Xenium: 247-379 genes

Resolution

Resolution Makes a Difference (55um vs 2um)

Comparison between Sequencing-based and Imaging –based Technologies

Unbiased Discovery

Precision Insights

Important Considerations - What You Have

- Biological question spatial info is critical to answer your biological question
- Species Visium (many species) vs GeoMx DSP (human and mouse only, morphology markers)
- ➤ Sample number & size (GeoMx many small tissues or 1 large tissue vs Visium 2 or 4 tissues), 13.2X13.2cm with Stereo-seq, 6.5X6.5mm with 10X visium
- Tissue type Fresh frozen vs FFPE (optimization?)
- ➤ RNA quality DV200 of ≥ 50% or RIN>5 or 7
- ➤ Budget

Additional Technical Considerations – What You Need

Having considered species, sample number, tissue type, tissue size, RNA integrity and your budget, following technical parameters should be considered:

- mRNA capture efficiency (Imaging based vs sequencing based
- Spatial resolution
- Number of genes profiled (WTA vs Panels, need custom genes?)
- Protein panels (Available vs no available, # of proteins)
- Imaging area (0.65cm vs 13cm)
- Sensitivity & specificity

Based on What You Have and What You Need, Check the Key Parameters of Different Spatial Platforms

Platform	Species	Tissue Type	# of genes profiled	# of Proteins profiled	Spatial Resolution	Capture efficiency	Imaging Area	Rate/slide
10X Visium	Any with V1 kit	Fresh & FFPE	WTA	35	55um	Low	0.65X0.65cm, 1.1X1.1cm	~\$3293+seq
GeoMx DSP	Human & mouse	Fresh & FFPE	WTA	570	50um (claimed)	Low	3.6X1.4cm (select ROI)	\$3837+seq
Visium HD	Human & mouse	FFPE	WTA	N/A	Single cell scale	Low	0.65X0.65cm	\$6645+seq
Stereo-Seq	Any	Fresh	WTA	N/A	Single cell	Low	1X1cm,2X3nm 13.2X13.2cm	\$3054+seq
Xenium	Human & mouse	Fresh & FFPE	247- 379,	N/A	Single cell	High	1X2 cm (select FOV)	\$3878
CosMX SMI	Human & mouse	Fresh & FFPE	1000, 6000	64	Single cell	High	2X1.5cm (select FOV)	\$6325

General Take-home Message

Experimental aim

Hypothesis Generation for Unbiased Discovery

Hypothesis Testing for Precision Insights

Xenium, CosMx SMI,

Visium HD, Stereoseq

Upcoming Spatial Technologies

- > 3-D Spatial Multiomics (StellarOmics) Beta test stage
- In-situ Sequencing (Singular Genomics) Early access
- Single-Cell Spatial Mapping (Curio Bioscience) Early access

StellarOmics: 3D spatial Multiomocs

- > Imaging-based in situ sequencing
- > single cell resolution
- > 15mm X15mm X 0.2mm capturing area
- Multi-cell-layer profiling
- > 250 gene panel with up to 250 custom genes

Singular Genomics: G4X Spatial Sequencing

The G4X Sequencer combines two technologies into one singular platform: high-throughput in-situ spatial multiomics and next-generation sequencing

- ➤ Direct sequencing of RNA at subcellular resolution
- ➤ Profiling 300 genes at single cell resolution
- ➤ Imaging 10-15 proteins
- ➤ Visualizing tissue morphology (Fluorescent H&E)

Curio Bioscience: Curio Trekker – Single Cell Spatial Mapping

Schematic of Slide-tags. A 20-µm fresh-frozen tissue section is applied to a monolayer of randomly deposited, DNA-barcoded beads that have been spatially indexed. These DNA spatial barcodes are photocleaved and diffused into 20 µm fresh frozen tissue sections to associate them with nuclei (2um resolution) associate with nuclei. Spatially barcoded nuclei are then profiled using established droplet-based single-nucleus sequencing technologies. (Russell et al. Nature 2024)

