UCLA Health

Twin Vaginal Deliveries in Labor Rooms: A Cost-Effectiveness Analysis

Jenny Y Mei¹, Divya Mallampati², Ilina D Pluym¹, Christina S Han¹, Yalda Afshar¹

- 1. University of California, Los Angeles
- 2. University of North Carolina, Chapel Hill

Background/ Objective

Background/ Objective

- In many institutions, twin vaginal deliveries (VDs) occur in the operating room (OR) given the risk of converting to cesarean delivery (CD) for twin B.
- Overall the risk of conversion is low around 7%, and more data is needed to investigate the cost-effectiveness of delivering twins in the labor and delivery room (LDR) versus the OR.
- We aimed to evaluate the cost-effectiveness of performing VDs for twin gestations in the LDR versus the OR.

Study Design

Study Design

- We designed a decision-analysis model to compare costs and effectiveness of two strategies of twin deliveries undergoing trial of labor:
 - 1. Intended delivery in the LDR
 - 2. Delivery in the OR
- We included costs associated with each combination of VD and CD adjusted for January 2019 USD.
- One-way, two-way, and Monte Carlo sensitivity analyses were performed to assess model strength.
- Incremental cost effectiveness ratio (ICER) was defined as cost needed to gain one quality adjusted life year (QALY).
- Tree Age Pro was used for analysis.

Results

Results

- In the base case scenario, where 7% of deliveries resulted in conversion to CD for twin B, attempting to deliver twins in the LDR is the most cost-effective strategy.
- For every QALY gained by delivering in the OR, 243,335 USD would need to be spent (ICER).

Results

- In univariate sensitivity analyses, the most cost-effective strategy shifted to delivering in the OR when the following was true:
 - Probability of successful VD was less than 86%
 - 2. Probability of morbidity after emergent CD from the LDR exceeded 3.5%
 - Cost of VD in the LDR exceeded 10,500 USD
 - 4. Cost of CD in the OR was less than 10,000 USD or
 - 5. Probability of death from emergent CD exceeded 2.8%
- In bivariate analyses, the most cost-effective strategy was sensitive to:
 - Cost of VD in the OR versus LDR
 - 2. Probability of VD in the LDR combined with cost of conversion
 - 3. Probability of morbidity after emergent CD combined with cost of neonatal morbidity
- Assuming a willingness-to-pay of 100,000 USD per neonatal QALY gained, attempted vaginal delivery in the LDR was cost-effective in 51% of simulations in a Monte Carlo analysis.

Table 1: Model Inputs

Input	Base-Case (%)	Range (%)	References
Labor Pro			
Induction of labor	48	20-50	1-3
CD prior to second stage in induction of labor	25	12-61	4,5
CD prior to second stage in spontaneous labor	10	9-24	4,5
VD of both twins	93	75-99	4,5
Neonatal Outco			
NICU admission	62	17-78	6.7
NICU admission if delivered by emergent CD	77	55-82	7.8
Neonatal morbidity for a VD or a converted CD	1	0-1.7	9,10
Neonatal morbidity if delivered by emergent CD	2	1-6	11-13
Fetal/neonatal death	1.7	0.8-3.4	3.10
QALY for neonate with severe morbidity*	0.75	0.6-0.96	14,15
Average life expectancy	79	76-81	16,17
Discount rate	0.03	0-0.06	
Cost			
Cesarean delivery	12897	6448-25794	18
VD in an LDR	7937	3968-15874	18
VD in LDR and emergent CD in OR	10417	5208-20834	18
VD in OR	12521	6260-25042	18
VD and CD in OR	12709	6354-25418	18
NICU admission	43254	21627-25418	18
Nursery care	1234	617-2468	18
Lifetime cost of severe neonatal morbidity	1490745	750000-3000000	19,20

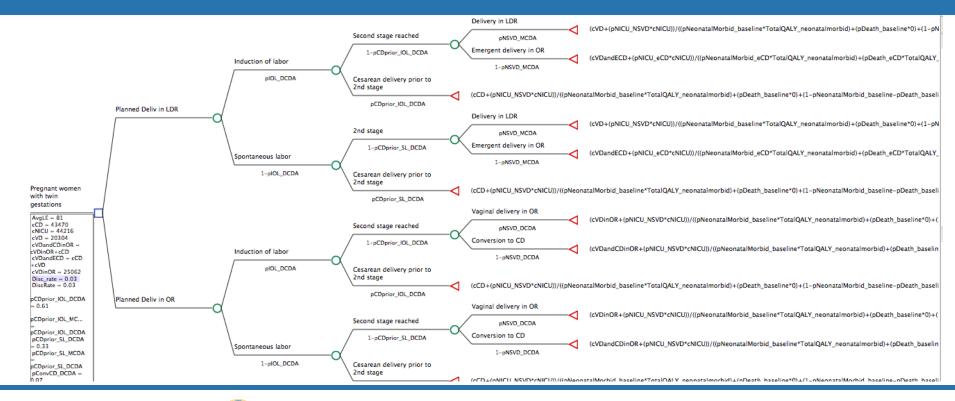
Table 2: Outcomes Based on Strategy (per 1000 women)

	Delivery in the LDR	Delivery in the OR
Total Cost (USD)	\$52,357,070	\$54,790,420
Total neonatal QALYs	30,680	30,690
Incremental cost per QALY	1	\$243,335
NICU admissions	629	620
Neonates with morbid conditions*	11	10

^{*}Morbid conditions was defined as the presence or development of hypoxic ischemic encephalopathy, seizures, or cerebral palsy

CD= cesarean delivery; VD= vaginal delivery; QALY = Quality adjusted life year; NICU = neonatal ICU; LDR = Labor and delivery room; OR = operating room

Conclusion



Conclusion

- Twin VDs in the LDR are cost-effective based on current neonatal outcome data.
- Further investigation is needed to elucidate the impact of cost and outcomes on optimal utilization of resources.

Supplementary Table: Cost Effectiveness Model

References

References

- 1. Taylor, M., et al., Induction of labor in twin compared with singleton pregnancies. Obstet Gynecol, 2012. 120(2 Pt 1): p. 297-301.
- 2. Mei-Dan, E., et al., Planned cesarean or vaginal delivery for women in spontaneous labor with a twin pregnancy: A secondary analysis of the Twin Birth Study. Birth, 2019. **46**(1): p. 193-200.
- 3. Doss, A.E., et al., Gestational age at delivery and perinatal outcomes of twin gestations. Am J Obstet Gynecol, 2012. 207(5): p. 410 e1-6.
- 4. Tavares, M.V., et al., Induction of labour vs. spontaneous vaginal delivery in twin pregnancy after 36 weeks of gestation. J Obstet Gynaecol, 2017. 37(1): p. 29-32.
- 5. de Castro, H., et al., Trial of labour in twin pregnancies: a retrospective cohort study. BJOG, 2016. 123(6): p. 940-5.
- 6. Refuerzo, J.S., et al., Neonatal outcomes in twin pregnancies delivered moderately preterm, late preterm, and term. Am J Perinatol, 2010. 27(7): p. 537-42.
- 7. Swanson, K., W.A. Grobman, and E.S. Miller, The Association between the Intertwin Interval and Adverse Neonatal Outcomes. Am J Perinatol, 2017. 34(1): p. 70-73.
- 8. Lagrew, D.C., et al., Emergent (crash) cesarean delivery: indications and outcomes. Am J Obstet Gynecol, 2006. 194(6): p. 1638-43; discussion 1643.
- 9. Alexander, J.M., et al., Cesarean delivery for the second twin. Obstet Gynecol, 2008. 112(4): p. 748-52.
- 10. Yang, Q., et al., Neonatal death and morbidity in vertex-nonvertex second twins according to mode of delivery and birth weight. Am J Obstet Gynecol, 2005. 192(3): p. 840-7.
- 11. Grobman, W.A., et al., The Association of Decision-to-Incision Time for Cesarean Delivery with Maternal and Neonatal Outcomes. Am J Perinatol, 2018. 35(3): p. 247-253.
- 12. Vilchez, G., et al., Contemporary analysis of maternal and neonatal morbidity after uterine rupture: A nationwide population-based study. J Obstet Gynaecol Res, 2017. 43(5): p. 834-838.
- 13. Holmgren, C., et al., Uterine rupture with attempted vaginal birth after cesarean delivery: decision-to-delivery time and neonatal outcome. Obstet Gynecol, 2012. 119(4): p. 725-31.
- 14. Werner, E.F., et al., Cost-effectiveness of transvaginal ultrasound cervical length screening in singletons without a prior preterm birth: an update. Am J Obstet Gynecol, 2015. 213(4): p.554 e1-6.
- 15. Tengs, T.O. and A. Wallace, One thousand health-related quality-of-life estimates. Med Care, 2000. 38(6): p. 583-637.
- 16. Indicators. [cited 2019; Available from: https://data.worldbank.org/indicator.
- 17. Collaborators, U.S.B.o.D., et al., The State of US Health, 1990-2016: Burden of Diseases, Injuries, and Risk Factors Among US States. JAMA, 2018. 319(14): p. 1444-1472.
- 18. Quality, A.f.H.R.a. Healthcare Cost and Utilization Project. 2019 [cited 2019; Available from: https://hcupnet.ahrq.gov/ setup.
- 19. American Collge of, O. and Gynecologists, Neonatal encephalopathy and cerebral palsy: executive summary. Obstet Gynecol, 2004. 103(4): p. 780-1.
- 20. Eunson, P., The long-term health, social, and financial burden of hypoxic-ischaemic encephalopathy. Dev Med Child Neurol, 2015. 57 Suppl 3: p. 48-50.

UCLA Health

