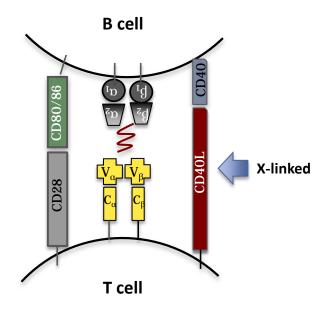
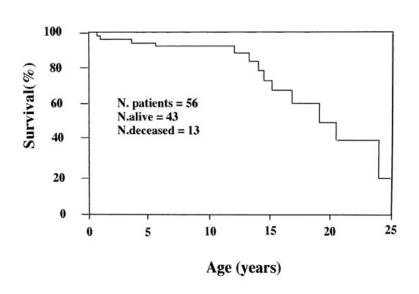
Targeted Gene Therapy in the Treatment of X-linked Hyper-IgM Syndrome

Caroline Kuo, MD

Pediatric Allergy & Immunology

Clinical Instructor




Disclosures

• None.

Hyper-immunoglobulin M syndromes

 Heterogeneous group of genetic disorders resulting in defects of immunoglobulin class switch recombination
 +/- defects of somatic hypermutation

Gene Therapy For XHIM

Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice

MICHAEL P. BROWN¹, DAVID J. TOPHAM², MARK Y. SANGSTER², JINGFENG ZHAO¹, KIRSTEN J. FLYNN², SHERRI L. SURMAN², DAVID L. WOODLAND², PETER C. DOHERTY², ANDREW G. FARR³, PAUL K. PATTENGALE⁴ & MALCOLM K. BRENNER⁵

NATURE MEDICINE . VOLUME 4 . NUMBER 11 . NOVEMBER 1998

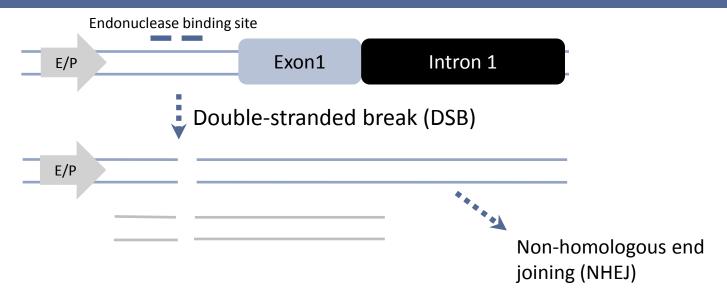
Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome

Maria Grazia Sacco,¹ Marco Ungari,² Enrica Mira Catò,¹ Anna Villa,¹ Dario Strina,¹ Luigi D. Notarangelo,³ Jos Jonkers,⁴ Luigi Zecca,¹ Fabio Facchetti,² and Paolo Vezzoni¹

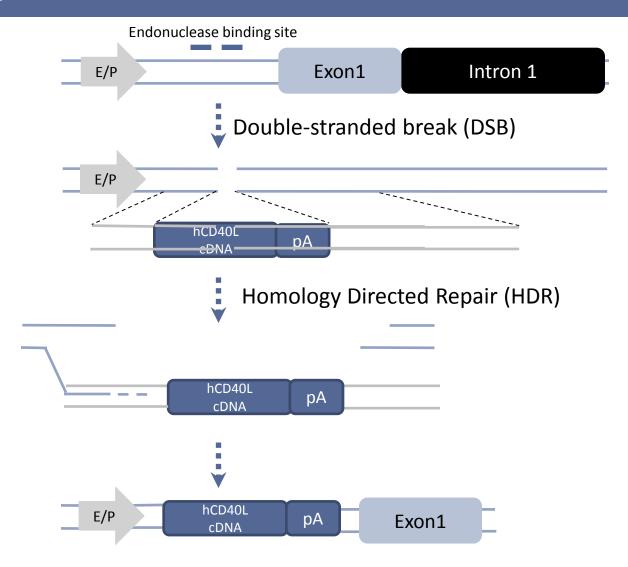
Cancer Gene Therapy, Vol 7, No 10, 2000: pp 1299-1306

Rationale

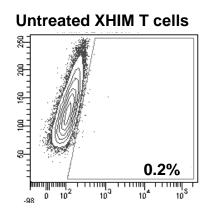
•CD40L gene is tightly regulated and requires expression in its normal chromosomal context

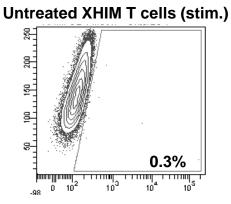

Hypothesis

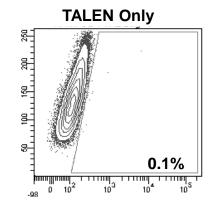
 Site-specific gene modification of the CD40L gene in human hematopoietic stem/progenitor cells will correct XHIM by autologous transplantation

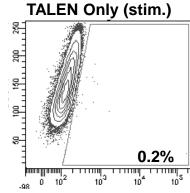

Site-specific endonucleases

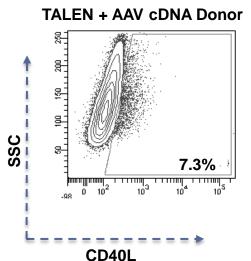
- Target specific DNA sequences for gene modification
- Allow physiologic expression of the corrected endogenous CD40L gene

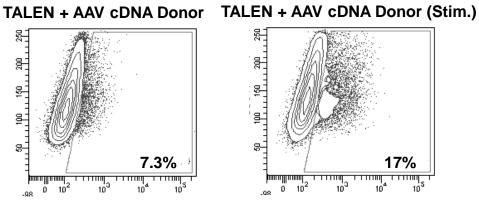

Targeted CD40L Gene Insertion

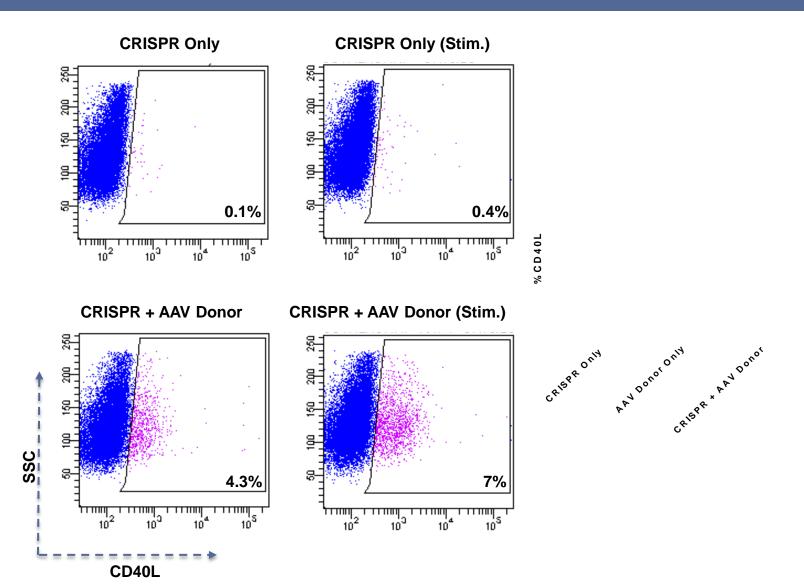



Targeted CD40L Gene Insertion

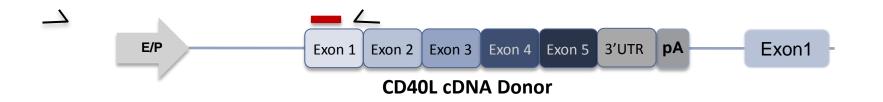



Gene Correction of XHIM Patient CD4 T cells Using TALENs and an AAV CD40L cDNA donor





CRISPR/Cas9 and AAV CD40L cDNA Donor Restores CD40L Expression in XHIM T Cells



Gene Modified XHIM T cells Respond Physiologically to Re-stimulation

TALEN

CRISPR

Correlation Between Flow Expression and Site-Specific Gene Insertion by ddPCR

TALENs and CRISPRs Achieve High Rates of Gene Modification in CD34+ HSC

- Day -2: Prestimulation of CD34+ HSPC
- Day 0: Nuclease electroporation and AAV transduction
- Day 1: Cell counts (survival)
- Day 3-4: Analysis

% Gene Modification by ddPC

Summary

- Achieved targeted gene modification at the CD40L locus in cell lines, primary XHIM T cells, and primary hematopoietic stem cells
- Corrected XHIM T cells responded physiologically to immune stimuli
- Future Directions:
 - Differentiate gene corrected CD34+ HSCT and demonstrate functional
 T cell reconstitution in NSG mice and artificial thymic organoids

Long-Term Goals

- Demonstrate safety and efficacy of site-specific gene therapy for XHIM in vitro and in vivo
- If sufficient efficacy and safety observed, translate the optimal approach to a clinical trial of autologous transplantation/gene therapy

Thank you!

Donald Kohn, MD Joseph Long Beatriz Campo **Aaron Cooper** Michael Kaufman Zulema Romero Megan Hoban **David Gray Roger Hollis** Georgia Lill

Funding:

K12 Child Health Research Center Development Award
Primary Immune Deficiency Treatment Consortium Accelerated
Innovations Award
PIDTC