

The Impact of Anemia on Fetal Growth Trajectory in Patients with Inflammatory Bowel Disease

Weirui Xiao^{1,2}, Johanna Bedoy¹, Mehrnaz Siavoshi^{1,3}, Lorna Kwan^{1,3}, Nirupama Bonthala^{1,4}, Ilina Pluym^{1,2}

¹ David Geffen School of Medicine at University of California, Los Angeles (UCLA)

² Department of Obstetrics and Gynecology, ³ Department of Urology, ⁴ Department of Gastroenterology

UCLA Health

David Geffen
School of Medicine

Background

- Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), affected about 6.8 million people around the world in 2017¹ with prevalence continuing to rise worldwide².
- Patients with IBD are at higher risk for anemia, malnutrition, and fistulas^{3,4}.
- These concerns are augmented in pregnancy. Global prevalence of anemia in pregnant patients is almost 40%⁶.
- Anemia in pregnancy is associated with increased rates of postpartum hemorrhage, maternal morbidity, and fetal growth restriction⁷.

Objective: This study aims to investigate the effect of anemia on longitudinal fetal growth in patients with IBD.

Hypothesis:

- Patients with IBD flares leading up to or during pregnancy are at higher risk of anemia and downstream consequences such as fetal growth restriction (FGR).

Methods

- Study design:** Retrospective cohort study at a single academic center from 1/1/2019 to 12/31/2023 consisting of 100 singleton deliveries among patients with IBD.
- Primary outcome:** rate of FGR compared between patients with anemia and those without anemia.
- Statistical analysis:** Fetal growth trajectories [estimated fetal weights (EFWs) by Hadlock criteria from all maternal-fetal medicine (MFM) ultrasounds and plotting the EFWs against gestational age in days] were modeled using a fourth root transformation and compared using mixed effects models.
- Secondary outcomes:** hypertensive disorders of pregnancy (HDP), gestational diabetes (GDM), preterm labor, prelabor rupture of membranes (PROM), thrombocytopenia, delivery method, postpartum hemorrhage, chorioamnionitis, and NICU admission
- Statistical analysis:** Kruskal-Wallis test or the Chi-squared test.

Maternal anemia was not associated with altered fetal growth trajectory in pregnancies complicated by IBD. 1 in 4 patients in our cohort had anemia at the time of delivery but this was not found to have a significant impact on fetal growth trajectory

Table 1 Demographics and IBD disease status by anemia status (N=100)

	Anemia (hgb < 11 on admission)	No (N=74)	Yes (N=26)	P-value
Age (years) at delivery, Mean (SD)	34.6 (4.4)	34.2 (4.8)	0.85 ¹	
Multiparity, n (%)	29 (39.2%)	13 (50.0%)	0.34 ²	
Race, n (%)			0.52 ²	
White	44 (59.5%)	11 (42.3%)		
Latinx	12 (16.2%)	4 (15.4%)		
Asian	5 (6.8%)	3 (11.5%)		
Black	2 (2.7%)	1 (3.8%)		
Other	11 (14.9%)	7 (26.9%)		
Insurance / Primary Payor, n (%)			0.82 ²	
Commercial (HMO/PPO/Blue Shield/Health Net)	59 (80.8%)	21 (80.8%)		
Other	14 (19.2%)	5 (19.2%)		
Pre-Pregnancy Obesity, n (%)	14 (18.9%)	10 (38.5%)	0.04 ²	
BMI Pre-Pregnancy, Mean (SD)	23.4 (4.4)	24.7 (4.4)	0.12 ¹	
BMI at delivery, Mean (SD)	28.1 (4.1)	29.5 (5.0)	0.12 ¹	
History of chronic HTN, n (%)	2 (2.7%)	1 (3.8%)	0.77 ²	
History of HDP, n (%)	3 (4.1%)	4 (15.4%)	0.05 ²	
In vitro fertilization, n (%)	8 (11.0%)	4 (15.4%)	0.55 ²	
Diagnosis, n (%)			0.24 ²	
Crohn's disease	22 (29.7%)	11 (42.3%)		
UC	52 (70.3%)	15 (57.7%)		
Clinical Remission at conception, n (%)	63 (85.1%)	23 (88.5%)	0.80 ²	

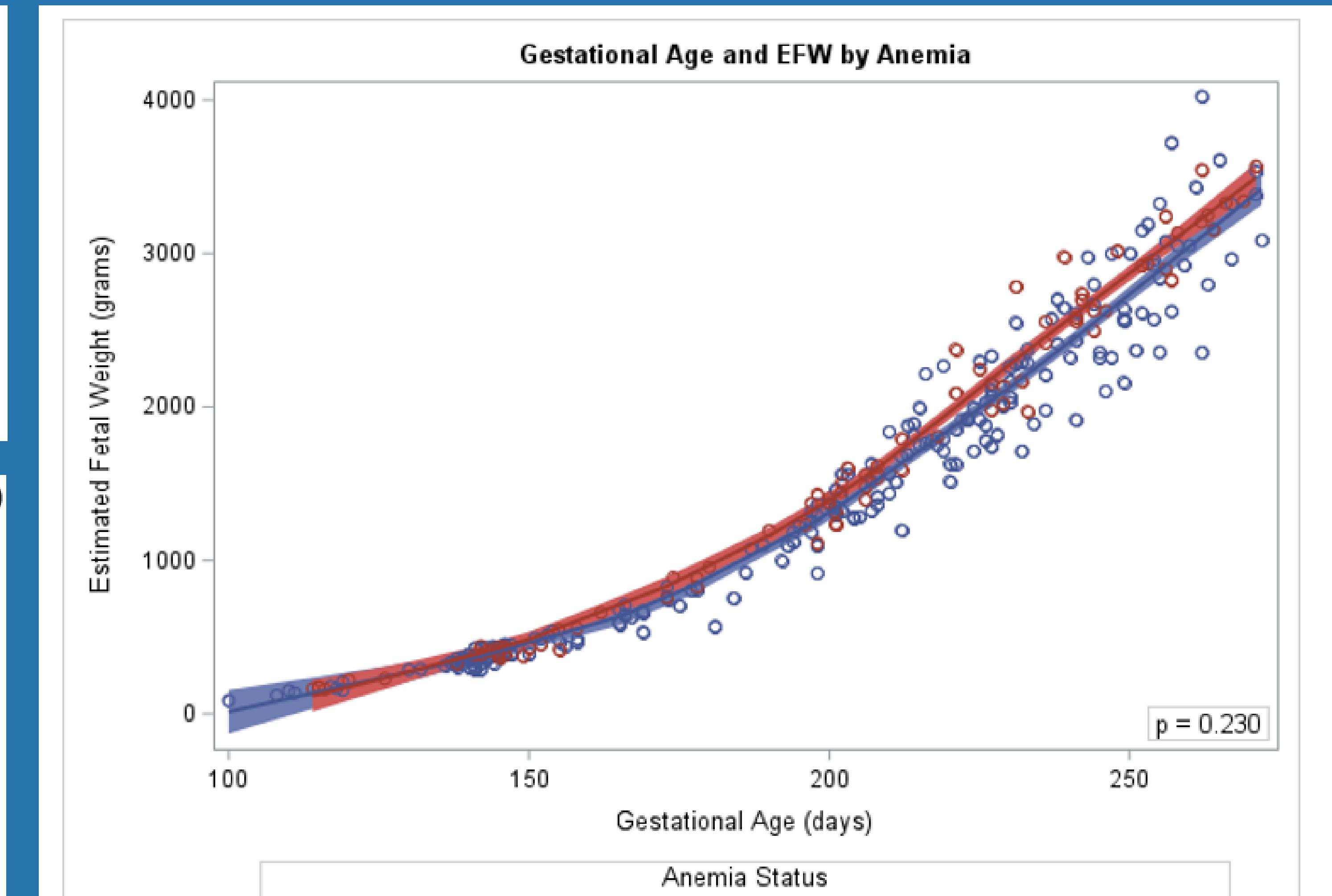
¹Kruskal-Wallis p-value; ²Chi-Square p-value

Limitations:

- Small sample
- High resource study population with commercial insurance
- Next steps:**
 - Repeating the study with a larger, more diverse sample population.

Table 2 Fetal growth and outcomes by anemia status (N=100)

	Anemia (hgb < 11 on admission)	No (N=74)	Yes (N=26)	P-value
Fetal growth restriction, n (%)	6 (8.3%)	0 (0.0%)	0.13 ²	
Birthweight (grams), Mean (SD)	3290.5 (570.6)	3436.1 (371.3)	0.21 ¹	
Birthweight < 10th percentile, n (%)	7 (9.5%)	1 (3.8%)	0.36 ²	
NICU Admission, n (%)	5 (6.8%)	2 (7.7%)	0.89 ²	
Fetal weight gain g/day, Mean (SD)	21.2 (5.0)	22.5 (3.8)	0.15 ¹	


Table 3 Pregnancy complications and outcomes by anemia status (N=100)

	Anemia (hgb < 11 on admission)	No (N=74)	Yes (N=26)	P-value
HDP, n (%)	14 (18.9%)	8 (30.8%)	0.21 ²	
Gestational Diabetes, n (%)	4 (5.4%)	3 (11.5%)	0.29 ²	
Preterm labor or PROM, n (%)	4 (5.4%)	1 (3.8%)	0.75 ²	
Thrombocytopenia, n (%)	10 (13.5%)	0 (0.0%)	0.05 ²	
Maternal Length of Stay, Mean (SD)	2.76 (1.40)	2.92 (1.29)	0.51 ¹	
Induction, n (%)	33 (47.1%)	12 (46.2%)	0.93 ²	
Delivery Method, n (%)			0.79 ²	
Vaginal	52 (70.3%)	19 (73.1%)		
Cesarean	22 (29.7%)	7 (26.9%)		
Recommended Cesarean due to IBD-related reason, n (%)	3 (4.1%)	2 (7.7%)	0.46 ²	
Postpartum hemorrhage, n (%)	9 (12.2%)	2 (7.7%)	0.53 ²	
Chorioamnionitis or endometritis, n (%)	9 (12.2%)	0 (0.0%)	0.06 ²	

¹Kruskal-Wallis p-value; ²Chi-Square p-value

To see other research from our department, please use the QR code to the left. Otherwise, email WeiruiXiao@mednet.ucla.edu with any questions.

Figure 1. Fetal growth trajectory modeled by anemia status showed no significant difference between the groups (interaction p = 0.230; N=100).

References

- The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet Gastroenterol Hepatol*. Jan 2020;5(1):17-30. doi:10.1016/j.lgh.2019.03.033. 4
- Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. *Lancet*. Dec 2017;390(10114):2769-2778. doi:10.1016/j.lancet.2017.03.048. 2
- Lichtenstein GR, Loftus EV, Arzali A, et al. ACG Clinical Guideline: Management of Crohn's Disease in Adults. *Am J Gastroenterol*. Jun 3 2025;120(6):1225-1264. doi:10.1430/ajg.0000000000003463
- Rubin DT, Ananthakrishnan AN, Siegel CA, Barnes EL, Long MD. ACG Clinical Guideline Update: Ulcerative Colitis in Adults. *Am J Gastroenterol*. Jun 3 2025;120(6):1187-1224. doi:10.1430/ajg.0000000000003463
- Teichman J, Nisenbaum R, Lausman A, Sholberg M. Suboptimal iron deficiency screening in pregnancy and the impact of socioeconomic status in a high-resource setting. *Blood Adv*. Nov 2021;5(22):4666-4677. doi:10.1182/bloodadvances.2021004352
- Karayannidis C, Chrysanthou S, Salim S, et al. Global Prevalence of Anemia in Pregnant Women: A Comprehensive Systematic Review and Meta-Analysis. *Matern Child Health J*. Jul 2022;26(7):1473-1477. doi:10.1007/s022-022-0384-1
- Mahadevan U, Robinson C, Bernasko N, et al. Inflammatory Bowel Disease in Pregnancy: Clinical Care Pathway: A Report from the American Gastroenterological Association IBD Parenthood Project Working Group. *Am J Obstet Gynecol*. Apr 2019;220(4):308-323. doi:10.1016/j.ajog.2019.02.027
- Shmidt E, Dubinsky MC. Inflammatory Bowel Disease and Pregnancy. *Am J Gastroenterol*. Oct 1 2022;117(10):60-68. doi:10.1430/ajg.0000000000001963