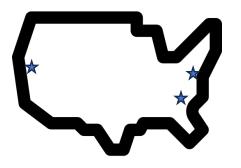
Advancing Artificial Intelligence and Machine Learning in Primary Care



Timothy Tsai DO MMCi

Clinical Assistant Professor, Medicine
Data Lead, Stanford Asynchronous Virtual Co-PCP
Associate Medical Director, Stanford Healthcare AI Applied Research Team
Division of Primary Care and Population Health
Stanford University School of Medicine

What is Missing in Healthcare AI/ML Today?

Only 3% of FDA
approved AI/ML tools
is intended for
primary care, and 1%
of AI/ML research
funding goes to
primary care

90% of AI/ML models never make it to production, and 97% of FDA approved AI/ML tools never undergo prospective evaluation AI/ML activity is concentrated in a short list of affluent academic centers, and community engagement is little to non-existent

How can a Research Team Address These Gaps?

Develop effective cross-sectoral collaborations

Engage in the implementation science of AI/ML

Partner in AI/ML policy and health equity work

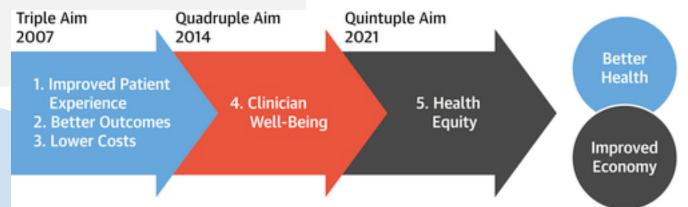
Mission

To bring leading edge AI technologies from "code to bedside" in support of the Quintuple Aim.

Vision

To be a national leader in the study and implementation of AI technologies to solve specific, practical problems in healthcare.

Core Competencies


Translational AI research study design and AI implementation

Clinical integration workflow design and simulation

Quality improvement and design thinking methodology

Clinical Decision Making

Autoimmune Disease

Behavioral Health

Population Health Management

Remote Patient Monitoring

Hypertension & Heart Failure

Stress Sensing

Value Based Care

Stanford University Human-Centered Artificial Intelligence

Predicting ED/Hospitalizations

Digital Care Coordinator

Care Gap Voice Assistant

Transitions of Care

Predicting Clinical Deterioration in Hospitals

Advance Care Planning

Care Team Burnout

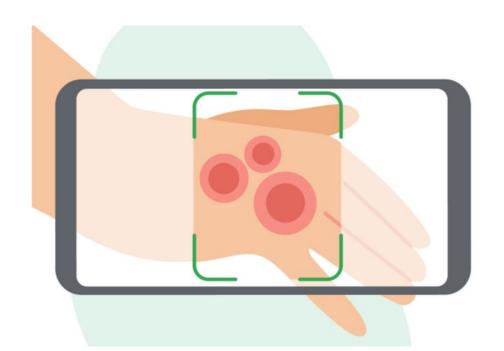
Automating Clinical Documentation

Message Categorization

Message Auto Reply

Health Policy, **Education and Development**

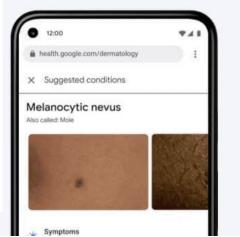
Advocacy & Education



Research Capacity Building

Improving Access to Skin Disease Diagnosis

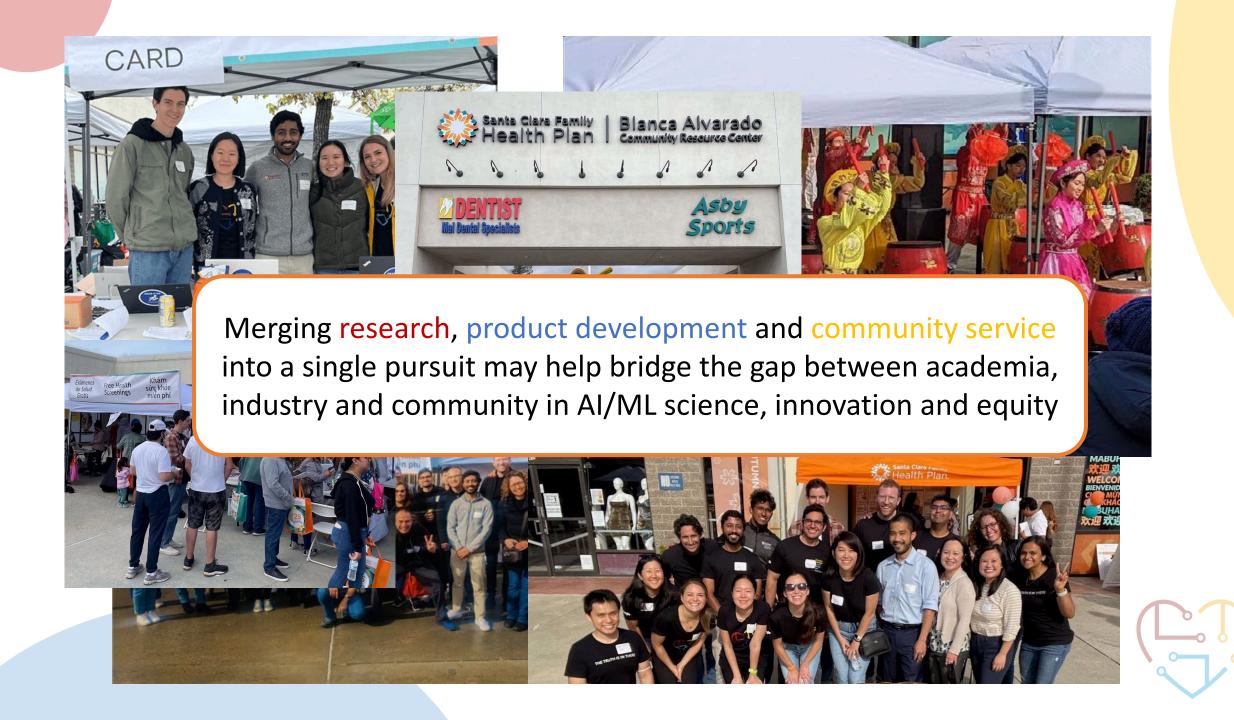
- Problem: Primary care providers manage 70% of skin cases, and access to dermatology is lacking in many community settings
- What's been done: Al is noninferior to dermatologists, and can improve PCP diagnoses
- What we're doing: Testing the Al's feasibility, acceptability, and performance in the community



A deep learning system for differential diagnosis of skin diseases

Al built using 16K cases can distinguish between 419 skin conditions, and is non-inferior to dermatologists and superior to PCPs on 963 validation cases

Enrolled **110**diverse community
participants across
4 health fairs



73% of participants were extremely or very satisfied with the app

Clinicians: app was concordant with their own assessments in **86%** of cases

Clinical Decision Making

Autoimmune Disease

Behavioral Health

Population Health Management

Remote Patient Monitoring

Hypertension & Heart Failure

Stress Sensing

Value Based Care

Stanford University Human-Centered Artificial Intelligence

Predicting ED/Hospitalizations

Digital Care Coordinator

Care Gap Voice Assistant

Transitions of Care

Predicting Clinical Deterioration in Hospitals


Advance Care Planning

Care Team Burnout

Automating Clinical Documentation

Message Categorization

Message Auto Reply

Health Policy, **Education and Development**

Research Capacity Building

Improving Chronic Care With Remote Monitoring

- Problem: Episodic visits are not sufficient for controlling chronic diseases at the population level
- What's been done: Al-assisted RPM is promising, but evidence is inadequate and RPM vendors operate outside health systems
- What we're doing: Testing an Alassisted RPM program vs usual care for HTN in a pragmatic RCT

Connect with your coach via direct messaging.

Reached out to
11,000+ patients
via patient portal
and text messages

Collected and entered **1,500+**BP readings into EHR for pop health

Enrolled **300** patients in fully remote fashion

Clinical Decision Making

Dermatology in Primary Care

Autoimmune Disease

Behavioral Health

Population Health Management

Remote Patient Monitoring

Hypertension & Heart Failure

Stress Sensing

Value Based Care

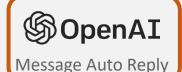
Stanford University Human-Centered Artificial Intelligence

Predicting ED/Hospitalizations

Digital Care Coordinator

Care Gap Voice Assistant

Transitions of Care


Predicting Clinical Deterioration in Hospitals

Advance Care Planning

Care Team Burnout

Automating Clinical Documentation

Message Categorization

ACADEMY Equity & Governance

Health Policy, **Education and Development**

Using AI to Draft Replies to Patient Messages

- Problem: COVID-19 hastened the adoption of virtual care resulting in 1.6-fold increase in electronic patient messages
- What's been done: All chatbots can draft replies to messages with human-quality text
- What we're doing: Testing a ChatGPT-powered Epic "draft auto-reply" feature with PCPs

COVID exacerbated the gender disparity in physician electronic health record inbox burden

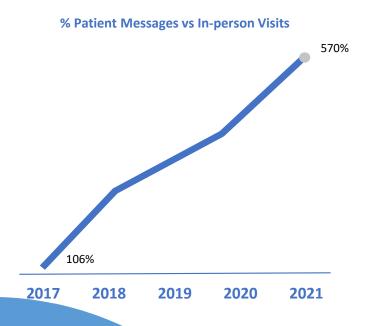
Lisa Rotenstein ¹, A Jay Holmgren ²

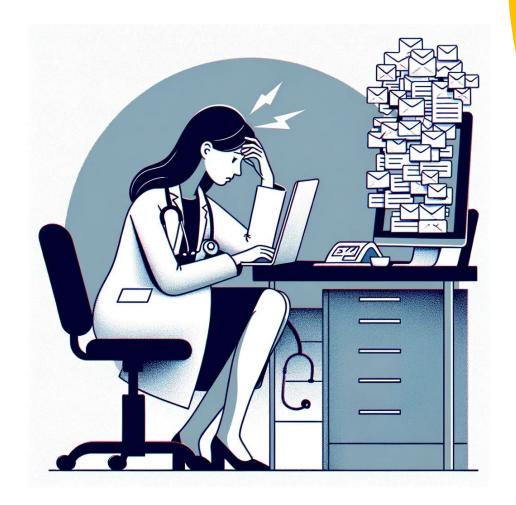
Association of Electronic Health Record Inbasket Message Characteristics With Physician Burnout

```
Sally L Baxter <sup>1 2</sup>, Bharanidharan Radha Saseendrakumar <sup>1</sup>, Michael Cheung <sup>3</sup>, Thomas J Savides <sup>2</sup>, Christopher A Longhurst <sup>2 4</sup>, Christine A Sinsky <sup>5</sup>, Marlene Millen <sup>2</sup>, Ming Tai-Seale <sup>2 3</sup>
```

Increased Clinician Time Using Electronic Health Records During COVID-19 Pandemic

Timothy Tsai 1 2 3, Mina Boazak 1 4 3, Eugenia R McPeek Hinz 1




How did we get here?

- HITEC Act and meaningful use
 - Adoption of EHR-based patient portals
- 21st Century Cures Act
- COVID 19 pandemic
 - Telehealth
 - Remote Care

Electronic messaging within electronic health records (EHRs) has emerged as a leading cause of clinician burnout

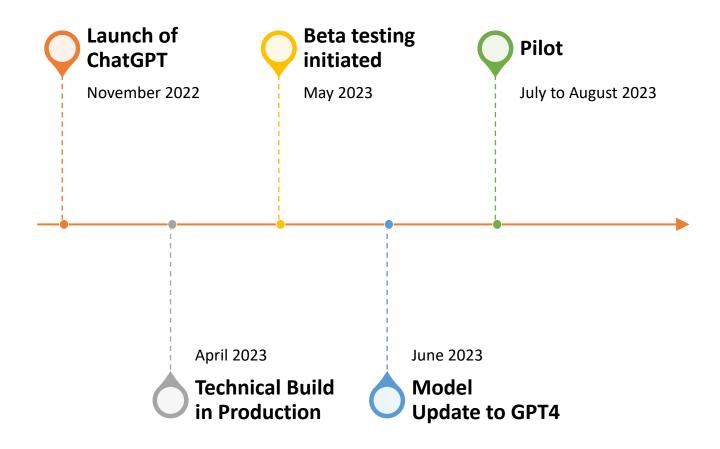
- Loss of the therapeutic relationship
- Clinician burnout
- Exacerbation of inequalities from the Digital Divide

Task Category, by Activity During Office Hours	Tasks, n	Mean Time to Complete Task, s	Tasks per Hour, <i>n</i>	Time Spent (95% CI), %	
				Total*	By Task Category
Direct clinical face time				33.1 (31.9-34.5)	
With patient	4483	93	10	-	27.0 (25.8-28.3)
With staff and others (patient not present)	2121	45	5	-	6.1 (5.7-6.5)
EHR and desk work				49.2 (47.8-50.6)	
Documentation and review	8623	69	20	-	38.5 (37.3-39.8)
Test result	1661	59	4	-	6.3 (5.8-6.8)
Medication order	622	59	1	-	2.4 (2.2-2.5)
Other order	610	52	1	-	2.0 (1.9-2.2)
Administrative tasks				1.1 (0.9-1.3)	
Insurance	191	49	<1	-	0.6 (0.5-0.7)
Scheduling	125	59	<1	-	0.5 (0.3-0.6)
Other tasks				19.9 (18.2-21.6)	
Closed to observation	163	524	<1	-	5.5 (4.5-6.5)
Other (aggregated)	969	183	2	-	5.2 (4.3-6.0)
Transit	2946	15	7	-	2.9 (2.8-3.0)
Personal	902	109	2	-	6.3 (5.6-7.1)

EHR = electronic health record.

^{*} Total sums to 103.3% because the Work Observation Method by Activity Timing platform allows recording of 2 tasks done in parallel. Multitasking results in overlapping time records, which are additive. Thus, the total task time is >100% of the total time observed.

Strategies to Address In Basket Burden


- Billing for patient messages
- Automated message categorization and triage
- Multidisciplinary teams to address message pools
- Al-generated draft patient messages

Beta testing with GPT 3.5

LLM Draft Replies Pilot Study: A developmental assessment for quality improvement (QI) purposes leveraging the RE-AIM evaluation framework for AI (GPT4) generated draft replies for patient messages

Enrolled 206
users in Primary
Care and GI
including
frontline
providers
(MDs/APPs),
RNs, and clinical
pharmacists

Explore the utility of Assess barriers and Inform iterative the ALLIM tool and facilitators to broad improvements to possible impact on implementation the AI LLM tool burnout/burden Pre and Post Surveys (NASA TLX, Burnout, Usability) Reporting (Clarity, Signal) **Pilot Feedback Channels** (Point of message feedback in Epic, ad hoc emails)

Analysis performed on 80 providers for whom we have both pre- and post- surveys

Clinical Decision Making

Population Health Management

Value Based Care Transitions of Care

Care Team Burnout Health Policy, Education and Development

Develop effective cross-sectoral collaborations

Engage in the implementation science of AI/ML

Partner in AI/ML policy and health equity work

The Future

Al is not going to replace humans, but humans with Al are going to replace humans without Al

> Karim Lakhani Professor, Harvard Business School

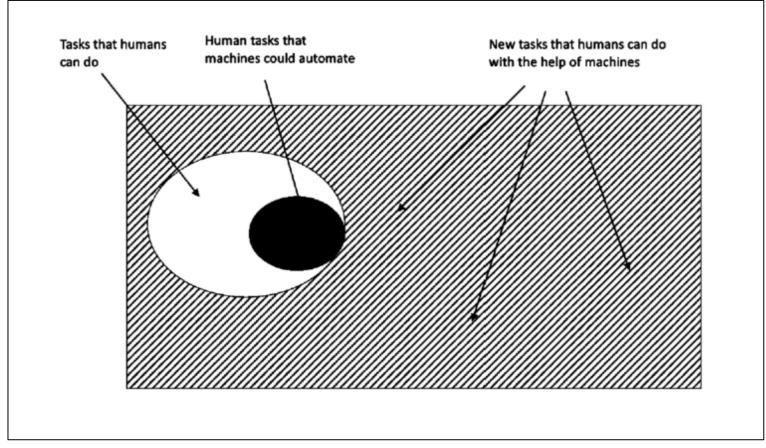


Figure 1

A "Fundamental Theorem" of informatics.

Charles Friedman, 2009
-A "fundamental theorem" of biomedical informatics. J Am Med Inform Assoc. 2009 Mar-Apr;16(2):169-70.

The Future

Erik Brynjolfsson, Professor, Director Stanford Digital Economy Lab

https://digitaleconomy.stanford.edu/news/the-turing-trap-the-promise-peril-of-human-like-artificial-intelligence/

| Stanford | Primary Care and Population Health

Thank you! Questions?

https://med.stanford.edu/healthcare-ai.html

Email

LinkedIn timothy.tsai@stanford.edu www.linkedin.com/in/timothytsai1