

Adverse obstetric and neonatal outcomes in dichorionic twins: Does Zygosity Play a Role?

Prisca C. Diala, MD; Sara Khan, MD; Tra-Mi Bao, BS; Jiayue Chen, MPH; Jared Miguel Duldulao, MD; Mehrnaz Siavoshi, MS MPH; Lorna Kwan, BS, MPH; Neil Silverman, MD; Ilina Pluym, MD

Background

- Categorization of twin gestations are often based on chorionicity and amniocitity, and less so on zygosity
- Monochorionic twin gestations, which are all monozygotic are at increased risk for adverse perinatal outcomes compared to dichorionic twins
- About 30% of dichorionic twins are monozygotic
- We evaluated the association between zygosity, preterm birth, and perinatal outcomes in dichorionic twin pregnancies

Study Design

Retrospective cohort study of 265 dichorionic twin pregnancies at two urban medical centers between 2016 and 2024

Grouped by zygosity based on NIPT results, sex at birth, or IVF records

Primary outcome was preterm delivery rate, and **secondary outcome** was composite neonatal morbidity

Results

- 94% were dizygotic (DZ) and 6% were monozygotic (MZ)
- Fifty-one percent of DZ and 44% of MZ pregnancies resulted in preterm delivery ($p=0.40$)
- A neonatal morbidity event occurred in 43% of DZ and 34% of MZ pregnancies ($p=0.36$)
- Severe fetal growth restriction (FGR) (aOR 5.09, 95% CI 1.54–16.83) and hypertensive disorders (HD) (aOR 1.70, 95% CI 1.16–2.51) were independent predictors of preterm delivery, while increased parity was protective (aOR 0.51, 95% CI 0.27–0.95)
- Small for gestational age (aOR 1.77, 95% CI 1.01–3.11), IVF conception (aOR 1.72, 95% CI 1.04–2.84), HD (aOR 1.73, 95% CI 1.09–2.74), and preterm delivery (aOR 22.24, 95% CI 13.01–38.03) were predictors of neonatal morbidity

Conclusion

- Zygosity did not significantly impact obstetric or neonatal outcomes in dichorionic twin pregnancies
- Rather, adverse outcomes were driven by pregnancy related factors such as FGR and HD

Adverse outcomes in dichorionic twin pregnancies are mainly driven by clinical factors rather than genetic twinning status.

Figure 1: Adjusted multivariate regression of preterm delivery in dichorionic twins

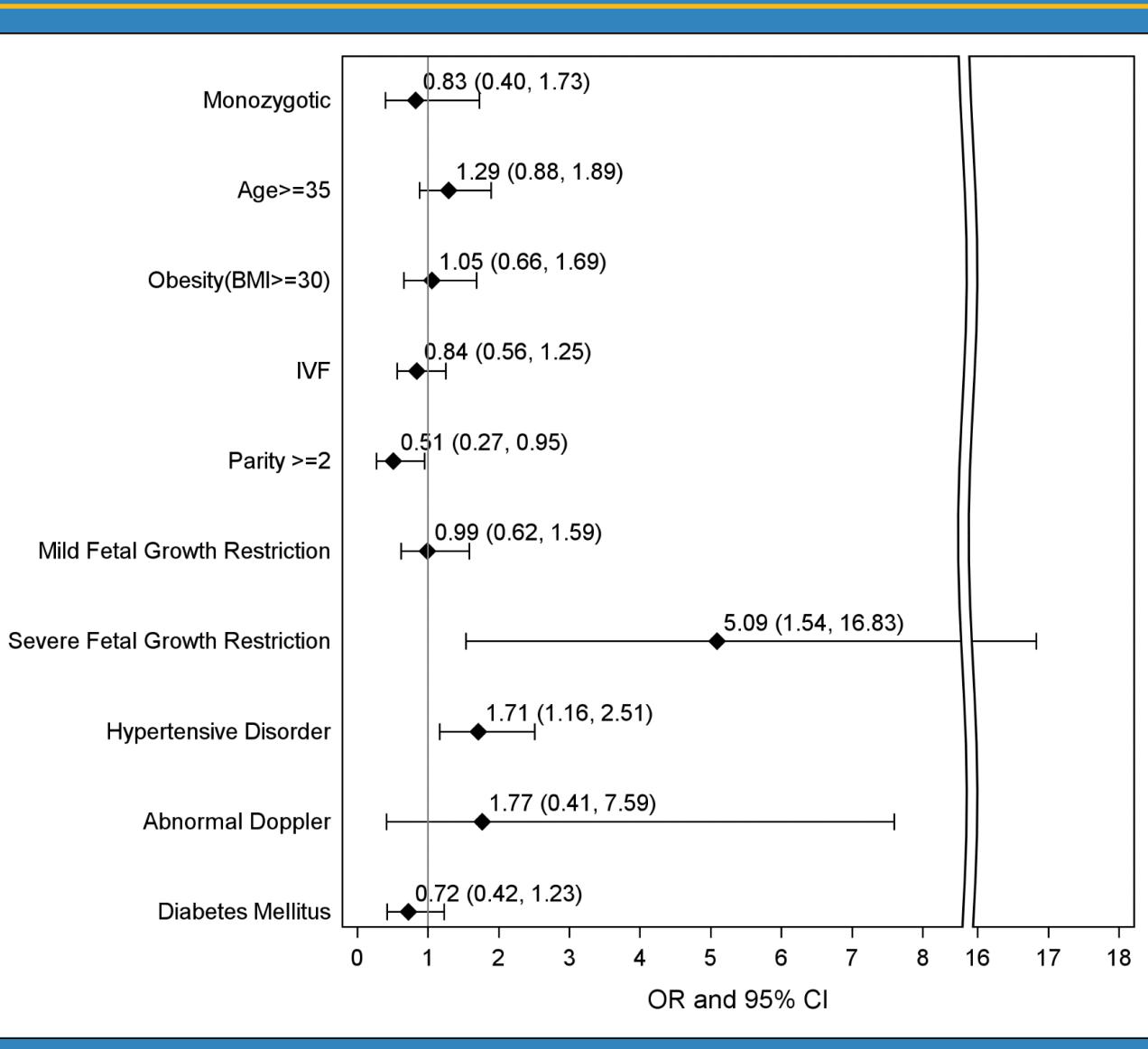
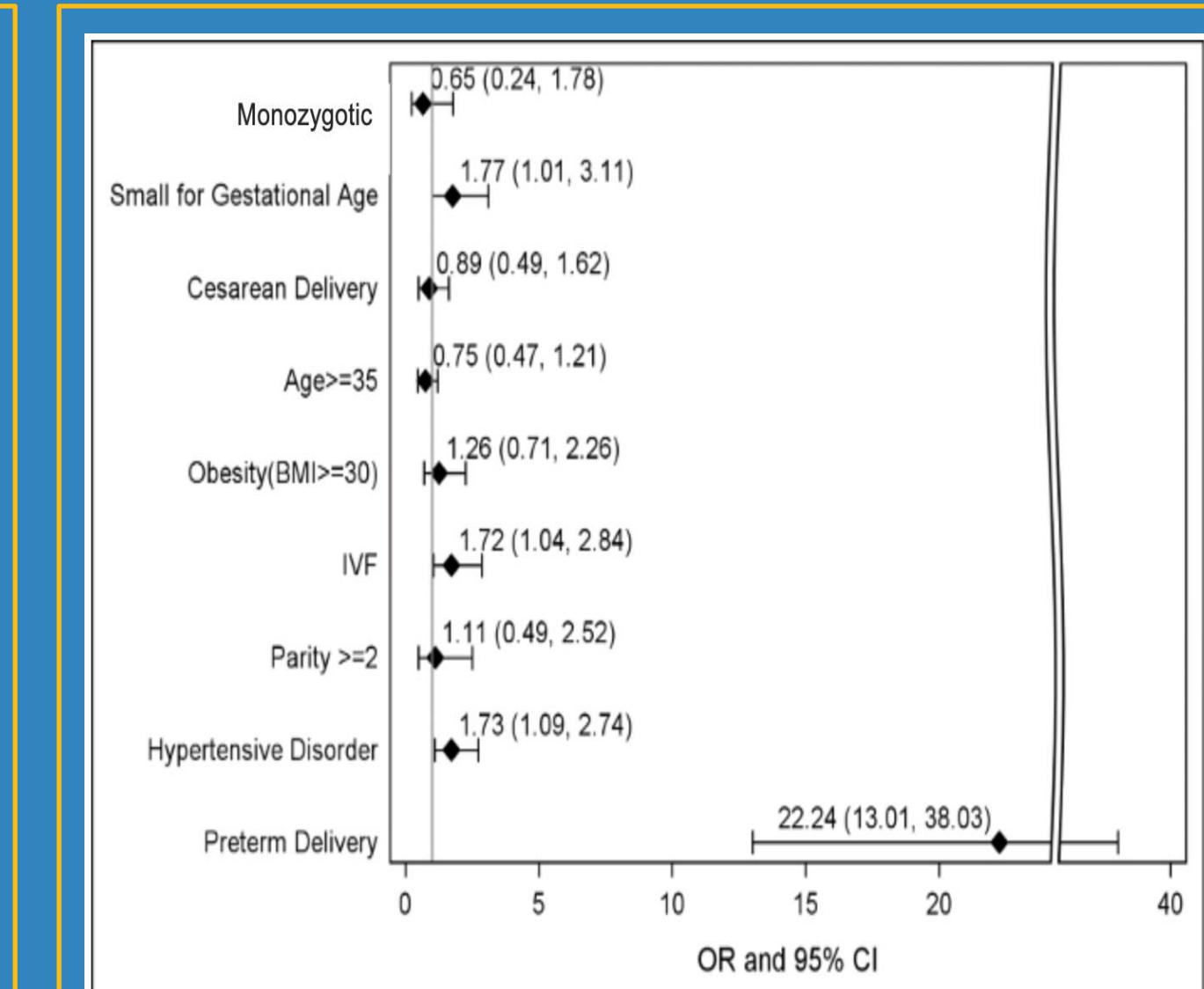



Figure 2: Adjusted multivariate regression of composite neonatal morbidity in dichorionic twins

Maternal Characteristics				
	Dizygotic (N=249)	Monozygotic (N=16)	Total (N=265)	P-value
Maternal Age				0.5256 ¹
Mean (SD)	35.2 (5.15)	34.4 (4.41)	35.2 (5.10)	
Median (IQR)	35.0 (32.0, 38.0)	34.0 (31.0, 37.0)	35.0 (32.0, 38.0)	
Parity (Living), n (%)				0.0846 ²
0	160 (64.3%)	7 (43.8%)	167 (63.0%)	
1	64 (25.7%)	8 (50.0%)	72 (27.2%)	
2	16 (6.4%)	0 (0.0%)	16 (6.0%)	
3	5 (2.0%)	0 (0.0%)	5 (1.9%)	
4	2 (0.8%)	1 (6.3%)	3 (1.1%)	
6	2 (0.8%)	0 (0.0%)	2 (0.8%)	
Race, n (%)				0.8438 ²
Asian	37 (14.9%)	2 (12.5%)	39 (14.7%)	
Black	19 (7.6%)	0 (0.0%)	19 (7.2%)	
Decline to State	28 (11.2%)	2 (12.5%)	30 (11.3%)	
Multi-Race	6 (2.4%)	1 (6.3%)	7 (2.6%)	
Not Documented	1 (0.4%)	0 (0.0%)	1 (0.4%)	
Other	26 (10.4%)	1 (6.3%)	27 (10.2%)	
White	132 (53.0%)	10 (62.5%)	142 (53.6%)	
Ethnicity, n (%)				0.9672 ²
Hispanic or Latino	52 (20.9%)	4 (25.0%)	56 (21.1%)	
Non-Hispanic/Latino	183 (73.5%)	11 (68.8%)	194 (73.2%)	
Not documented	1 (0.4%)	0 (0.0%)	1 (0.4%)	
Prefers not to answer	13 (5.2%)	1 (6.3%)	14 (5.3%)	
BMI				0.6918 ³
Mean (SD)	26.0 (6.38)	25.0 (4.33)	25.9 (6.27)	
Median (IQR)	24.5 (21.9, 28.4)	23.0 (21.6, 29.5)	24.5 (21.9, 28.5)	
IVF Pregnancy, n (%)				0.4336 ²
Yes	85 (34.1%)	7 (43.8%)	92 (34.7%)	
No	164 (65.9%)	9 (56.3%)	173 (65.3%)	
Hypertensive Disorder of Pregnancy, n (%)				0.4532 ²
Yes	85 (34.1%)	4 (25.0%)	89 (33.6%)	
No	164 (65.9%)	12 (75.0%)	176 (66.4%)	
Pregestational Diabetes, n (%)				0.6095 ²
Yes	4 (1.6%)	0 (0.0%)	4 (1.5%)	
No	245 (98.4%)	16 (100.0%)	261 (98.5%)	
Gestational Diabetes, n (%)				0.4842 ²
Yes	30 (12.0%)	1 (6.3%)	31 (11.7%)	
No	219 (88.0%)	15 (93.8%)	234 (88.3%)	
Neonatal Characteristics				
	Dizygotic (N=498)	Monozygotic (N=32)	Total (N=530)	P-value
Fetal Growth Restriction, n (%)				0.3429 ²
Severe	30 (6.0%)	0 (0.0%)	30 (5.7%)	
Mild	83 (16.7%)	5 (15.6%)	88 (16.6%)	
None	385 (77.3%)	27 (84.4%)	412 (77.7%)	
Doppler Type, n (%)				0.8589 ²
Elevated	10 (2.0%)	1 (3.1%)	11 (2.1%)	
Absent	5 (1.0%)	0 (0.0%)	5 (0.9%)	
Reversed	4 (0.8%)	0 (0.0%)	4 (0.8%)	
Normal	479 (96.2%)	31 (96.9%)	510 (96.2%)	
Any Anomaly, n (%)				0.9206 ²
Yes	29 (5.8%)	2 (6.3%)	31 (5.8%)	
No	469 (94.2%)	30 (93.8%)	499 (94.2%)	

¹Equal variance two sample t-test; ²Chi-Square p-value; ³Kruskal-Wallis p-value; ⁴ Fetal Growth Restriction, Doppler Type and Any Anomaly are on individual infant level;

For Figure 2, **Composite neonatal morbidity** was defined as the presence of any of the following: respiratory distress, pneumothorax, surfactant use, hyperbilirubinemia requiring phototherapy, parenteral nutrition, nasogastric/orogastric (NG/OG) feeding, antibiotics within 48 hours of life, necrotizing enterocolitis, culture-proven sepsis, or neonatal death.

Questions?

Take a picture of this QR code to access the poster or email Prisca C. Diala at pdiala@mednet.ucla.edu