Heart of Gold
Three cardiac success stories

Profile in Courage
A med student personifies true grit

Meet the Chief
Chatting with UCLA's new top heart surgeon

Reason to Celebrate
Dedicating UCLA's 21st-century hospital
01 • Leadership
From the dean: A new hospital, a new beginning. By Dr. Gerald S. Levey

02 • The Cutting Edge
News and research reports: Making beautiful music with proteins.

06 • Interview
Richard J. Shemin, chief of cardiothoracic surgery. By Amy Albin

08 • Events
Celebrating Ronald Reagan UCLA Medical Center. By Tiffani Q. Mendinueto

FEATURES

10 • Heart of Gold
How UCLA’s cardiac programs are changing people’s lives. By Dan Gordon

16 • Profile in Courage
A medical student demonstrates the meaning of true grit. By Anne Burke

20 • Clemente’s Anatomy
Meet the man who wrote the book on modern anatomy. By David Geffner

26 • Gray Matters
What must be done to meet the challenge of America’s aging population. By Jeanne Wright

NEWS + NOTES

30 • Faculty Notes
Achievements, honors and notables: Remembering Dr. William J. Dignam.

32 • Alumni Notes
What’s happening from the MAA: Collecting medical texts for Iraq.

34 • Friends
Donor roundup: A $20-million gift to advance stem-cell research at UCLA.

37 • Epilogue
A moment of “quiet simplicity and reflective spirituality.” Photo by Fred Kimura, M.D. ’04

Cover: Heart of Gold by Pete McArthur
LEADERSHIP

New Beginnings. The opening of Ronald Reagan UCLA Medical Center in 2008 will herald a new era of modern medicine that builds upon UCLA’s strengths in education, research and patient care.

EVERY BUILDING HAS A STORY. Just ask the people who built it, or the people who conceived of the project, or those who hope to be served by it in the future. If you were to talk to the thousands of people who played a role in bringing the new Ronald Reagan UCLA Medical Center to life, you would hear thousands of different stories of how it came to be.

While the medical center will not open to patients until 2008, on June 4, 2007, we dedicated our new building – home to three hospitals: Ronald Reagan UCLA Medical Center, Mattel Children’s Hospital UCLA and the Stewart and Lynda Resnick Neuropsychiatric Hospital at UCLA. As we considered the magnitude of this accomplishment, we imagined the people who transformed the original vision for this project into a reality. From the architects to the construction workers to the engineers to the donors to the patients, Ronald Reagan UCLA Medical Center is the culmination of a truly collaborative process.

It has been a long journey for us. It has certainly been a long journey for me. Not only has this project taken up nearly 20 percent of my life, but I also seem to have lost about 20 percent of my hair in the process. This is the biggest construction project in the history of the University of California, and we’ve had our share of tough challenges, whether it was getting enough funding, or keeping the construction on track, or incorporating new technologies into the building that weren’t even invented when we first began its planning. But thanks to all that hard work, we are able to celebrate the completion of the major construction.

As one walks through the halls of Ronald Reagan UCLA Medical Center, it is impossible not to imagine what will transpire in this remarkable new building. We think about the children who will be born here. We think about the people who will come here for comfort, healing and hope. We think of the diseases that will be fought here. We think of the young doctors and nurses who will learn their life’s calling here. We think of the medical-research breakthroughs that will be uncovered here and will echo across the globe. We think of the countless miracles that will happen inside these walls.

We’re now entering the final lap. After an aircraft carrier is christened, the U.S. Navy spends the next year testing every piece of equipment and outfitting the final interior touches. So it is with hospitals. Our new building cannot, and will not, open until the entire staff has been fully trained and until every last piece of equipment, from a light switch to an MRI machine, is demonstrated to be fully operational. That means that over the coming months we’ll continue to stay incredibly focused. We’ll be fitting up the internal systems, installing and testing the clinical and IT equipment and, most important, training our 10,000 doctors, employees and volunteers to make sure everyone is comfortable in their new home.

It’s an honor to celebrate this project, and humbling to think about what this building holds for tomorrow. Together we’ve constructed a new foundation to build upon UCLA’s traditions of medical education, groundbreaking research and unparalleled patient care. The story of this building, of our building, has just begun.

Gerald S. Levey, M.D.
Vice Chancellor, UCLA Medical Sciences
Dean, David Geffen School of Medicine at UCLA
Proteins in the Key of G

TALK ABOUT BREATHING NEW LIFE into old music. Molecular biologists at UCLA have translated protein sequences into original classical compositions.

“We converted the sequence of proteins into music and got an auditory signal for each protein,” explains Dr. Jeffrey H. Miller, distinguished professor of microbiology, immunology and molecular genetics and a member of UCLA’s Molecular Biology Institute. “Every protein has its own auditory signature because every protein has a unique sequence.”

By assigning each amino acid a chord, “we wanted to see if we could hear patterns within the music, as opposed to looking at the letters of an amino acid,” says Rie Takahashi, a UCLA undergraduate in microbiology, immunology and molecular genetics and a classically trained pianist. “So we can listen to a protein, as opposed to just looking at it.”

The building blocks of proteins are linear sequences of 20 different amino acids. Assigning one note to each amino acid results in a 20-note scale. Because a 20-note scale is too large a range, “we paired similar amino acids together and assigned chords and chord variations for each amino acid,” Takahashi says. “Each component of the music reflects a specific characteristic of the protein. The rhythm is dictated by the protein sequence.”

In the music, individual amino acids are expressed as chords, and similar amino acids are paired. For example, the amino acids tyrosine and phenylalanine are both assigned a G-major chord but can be distinguished because the notes in the chord are arranged differently.

Takahashi, who conducted the research as an honors thesis, initially converted the amino acids and played the resulting music on the piano. Now the team is piloting a computer program, written by colleague Frank Pettit, that uses their translation rules to convert the protein sequences to music. They hope this will speed up the translation of large segments of genomes.

“We believe this can be a tremendous teaching tool to get children, non-scientists and the visually impaired interested in proteins and molecular biology,” says Dr. Miller, who is encouraging Takahashi to compile a CD of her compositions that contain variations of several proteins.

The journal Genome Biology published the findings in May 2007.

To listen to the protein compositions, go to www.mimg.ucla.edu/faculty/miller_jh/gene2music/examples.html

Combating MS in Men

A NEW TESTOSTERONE GEL shows promise for combating the effects of multiple sclerosis in men. Dr. Rhonda Voskuhl, director of UCLA’s Multiple Sclerosis Program, and Dr. Nancy Sicotte, assistant professor of neurology, found that application of the testosterone gel reduced symptoms, slowed brain degeneration and boosted muscle mass in 10 men with relapsing-remitting MS, the most common form of the disease. In relapsing-remitting MS, episodes of neurological symptoms, such as numbness or disturbed balance and gait, are followed by symptom-free periods of remission.

For the first six months of the study, the researchers monitored the men’s symptoms but did not treat them. For the next 12 months, each man applied 10 grams of a gel containing 100 milligrams of testosterone once a day to his upper arms.

“After a year, we saw an improvement in cognitive performance and a slowing of brain deterioration,” says Dr. Voskuhl. During the final nine months of gel application, in fact, the rate of brain deterioration in the men slowed by 67 percent. The men’s muscle mass also increased an average of 3.74 pounds during the treatment phase. The Archives of Neurology reported the findings in May.

“Another optimistic observation was that the testosterone protected against brain atrophy without causing a significant anti-inflammatory effect,” says Dr. Voskuhl. “This suggests that the protection provided by testosterone may not be limited to MS. It may also apply to other non-inflammatory neurodegenerative diseases.”

Like many other autoimmune diseases, MS is less common in men than in women, affecting about three women to every man. Dr. Voskuhl suspects that sex hormones and/or sex chromosomes may explain the higher incidence in women.
Research Revolution

UCLA HAS OPENED two state-of-the-art research buildings that together herald a new era in scientific exploration – the Biomedical Sciences Research Building & Orthopaedic Hospital Research Center (left) and the Neuroscience Research Building (right). The 230,000-square-foot Biomedical/Orthopaedic Hospital building was dedicated in September 2007. It is the first building on campus created expressly to encourage and cultivate joint investigations among faculty who would not ordinarily collaborate, and foster crossover discoveries in AIDS, stem-cell research and advances to combat a wide range of diseases. Architects designed the building with common laboratories between departments, which will house some 60 faculty research groups from a variety of fields. To the west is the 130,000-square-foot Neuroscience Research Building, which opened in 2005 and is a key design component uniting the academic and health-sciences campuses. It includes customized wet laboratories to house neuroscience and genetic research, support space, staff and research offices, and instructional and public spaces.

Hail to the Chief

DR. DAVID T. FEINBERG is the new chief executive officer of UCLA Hospital System and interim associate vice chancellor. He follows Dr. David Callender, who was named president of the University of Texas Medical Branch Galveston. Prior to assuming leadership for UCLA hospitals, Dr. Feinberg served as medical director of the Resnick Neuropsychiatric Hospital at UCLA.

Board certified in child and adolescent psychiatry, adult psychiatry and addiction psychiatry, Dr. Feinberg is a professor of clinical psychiatry in the David Geffen School of Medicine at UCLA.

Dr. Feinberg graduated cum laude in economics from UC Berkeley, and went on to graduate with distinction from the University of Health Sciences/The Chicago Medical School. He earned his master of business administration from Pepperdine University in 2002.

A well-published author and speaker on attention deficit/hyperactivity disorder, autism, pediatric bipolar disorder, pediatric depression and adolescent substance abuse, Dr. Feinberg also has consulted with health-care agencies about the industrialization of medicine.

UCLA Ranks No. 3 in U.S.!

U.S. NEWS & WORLD REPORT has ranked UCLA Medical Center the No. 3 hospital in the United States and, for the 18th consecutive year, the best hospital in the western United States.

The annual U.S. News rankings are based on a review of more than 5,400 American hospitals that looks at patient-outcomes data, reputation among physicians and other care-related factors. Of those hospitals, just 173 were ranked among 16 specialty areas in the magazine’s 2007 edition of “America’s Best Hospitals,” and only 18 made the Honor Roll, which recognizes hospitals that demonstrate excellence across many specialties.

UCLA ranked in the top 15 in 15 of the 16 areas. Other hospitals in the top three, according to this year’s report, were Johns Hopkins Hospital in Baltimore, Md., and the Mayo Clinic in Rochester, Minn.

For a video about the Biomed/Orthopaedic Hospital building, go to http://streaming.uclahealth.org/research-building
D-Day at UCLA

EARLIER THIS YEAR UCLA had its own D-Day – Disaster Day. The scenario sounded like something out of a Hollywood movie: Terrorists take advantage of a large earthquake to wreak havoc in Southern California by releasing a biological agent, crashing a plane and attacking a cruise ship. As a Level-1 trauma center, UCLA Medical Center was in the thick of it.

But even though it was a drill – part of a three-county exercise in April being run by the U.S. Army and code-named Operation Vector – medical center staff took it very seriously. “We are playing this real and true to the scenario,” said Victor Kennedy, director of the UCLA Health System Safety Office. Once the drill began, he said, “we have little control over external events, just like real life.”

For the hospital, the purpose of the exercise was for medical, administrative and support staff to rehearse coordinating and collaborating with external response agencies in the event of a regional disaster. In addition, as “victims” arrived in ambulances and on board a military helicopter, staff of the medical center were able to practice managing patients who had been exposed to biological agents, including mobilization, triage, treatment and reporting.

The experience gained through such training exercises, UCLA Medical Center officials say, is essential to ensure that, in the event of a natural or man-made disaster, UCLA’s medical and support teams will be prepared to respond appropriately and “will play an indispensable role in helping to save lives and prevent human suffering.”

To see a video of the disaster drill, visit http://streaming.uclahealth.org/ucladisasterdrill

Cueing the Brain

A UCLA STUDY has discovered that instructing autistic children to notice cues like facial expression and vocal tone trained their brains to better understand conversational meaning. Published in the June edition of the Archives of General Psychiatry, the research suggests a possible new route for treating autism.

The UCLA team used MRI to scan the brains of 18 autistic boys as they viewed and listened to narrated cartoon strips featuring children. Half of the cartoons ended with an ironic remark.

After comparing the brain scans to those from a control group of 18 non-autistic boys the same age, the scientists found that the autistic children displayed less activity in the medial prefrontal cortex, part of the brain’s network for understanding others’ intentions. When researchers coached the autistic children to pay attention to the speaker’s facial expression and vocal tone, however, activity in this brain region increased significantly.

“Our findings imply that you can train the autistic brain to make use of information conveyed by the human face and voice in order to successfully navigate social interactions,” says Dr. Mirella Dapretto, associate professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior at UCLA.

“The fact that we can ‘normalize’ brain activity by directing autistic children’s attention to important social cues indicates there’s nothing wrong with this region in the autistic brain,” adds Dr. Dapretto.

Images at left show no significant activity in key part of the “social brain” indicated by yellow arrows, while images on right show normal activity when child’s attention was explicitly directed toward speaker’s facial expression and tone of voice.
Of Mice and Men

Researchers at the UCLA Institute for Stem Cell Biology and Medicine (now named the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA) have found a new technique for reprogramming cells that may sidestep controversial cloning methods to allow another way to develop human-embryonic stem-cell lines.

Working closely with colleagues at Harvard, the UCLA scientists converted normal tissue cells from a mouse to cells with the same unlimited properties as embryonic stem cells, the cells that give rise to every cell type found in the body. Experimenting with mouse fibroblasts – cells that develop into connective tissue – the scientists added four transcription factors that changed the cells into pluripotent cells “virtually indistinguishable” from embryonic stem cells, explains co-lead author Dr. Kathrin Plath, an assistant professor of biological chemistry and an institute researcher. “We could find no evidence that they were different in any way. We were rather surprised at how well this reprogramming worked,” Dr. Plath says.

Last year, Japanese scientists discovered that the four transcription factors or genes could revert mouse skin cells to partially pluripotent cells. But scientists at UCLA and other university labs modified their procedure and were the first to reprogram the cells so they were identical to embryonic stem cells.

Reprogramming adult stem cells into embryonic stem cells could generate a potentially limitless source of immune-compatible cells for tissue engineering and transplantation medicine. If the work can be replicated in human cells, it may mean that a patient’s skin cells, for example, could be reprogrammed to become embryonic stem cells that could then be prodded into becoming beta islet cells to treat diabetes, hematopoetic cells to create a new blood supply for a leukemia patient or motor neuron cells to treat Parkinson’s disease. This new technique could provide an alternative to somatic cell nuclear transfer (SCNT), sometimes referred to as therapeutic cloning, a controversial method used to reprogram cells. SCNT has not yet been successfully accomplished with human cells.

Dr. Plath and her colleagues are now working to recreate the cell reprogramming in human cells, but it could take years to determine if the process is successful.

Hope for Wounded Warriors

A unique partnership between a military hospital and UCLA Medical Center will help several Armed Services personnel wounded in Iraq and Afghanistan. The first patient is U.S. Marine Cpl. Aaron P. Mankin, who was burned over 25 percent of his body and whose face was severely disfigured by a roadside bomb in Iraq in May 2005. Mankin began a series of facial-reconstruction surgeries in September that will take several months to complete.

“It is a privilege for UCLA Medical Center to assist our country’s men and women in the military,” says Dr. David T. Feinberg, CEO of UCLA Hospital System and interim associate vice chancellor. “We are honored to partner with Brooke Army Medical Center (BAMC) to help heal several of America’s wounded warriors.”

Since his return to the United States following his injury, Mankin has been at BAMC in San Antonio, Texas, where he lives with his wife, Diana, also a Marine, and their baby daughter, Maddie. Two other surgical candidates from BAMC have been selected for the project, dubbed “Operation Mend.” One goal of the project is to create a model for other medical institutions to benefit additional wounded service members. The surgeries will be led by Dr. Timothy Miller, chief of reconstructive and plastic surgery at UCLA and a Vietnam veteran. Service members like Cpl. Mankin “have given a great sacrifice to our country,” Dr. Miller says. “I feel it is my obligation to help them in any way I possibly can.”

Operation Mend was launched with the help of UCLA Medical Center board member and philanthropist Ronald A. Katz, who recognized that providing excellent care to injured soldiers need not be limited to the Department of Veterans Affairs and the U.S. Armed Services. “I think it is the private sector’s duty to stand up ... and do something extra to help,” says Katz. “[UCLA] has a spectacular facial-reconstruction group, and I asked, ’Is there a way that we could offer our services and give these kids not only the best the Army has to offer, but the best the country has to offer?’ ”

The Katz Family Foundation will fund all uncovered costs of the project, while the university will arrange to house the patients and their families at UCLA’s Tiverton House.

For video of Cpl. Mankin and to learn more about Operation Mend, go to http://streaming.uclahealth.org/operationmend
And to give to the Division of Plastic and Reconstructive Surgery, see https://giving.ucla.edu/plasticsurgery
REGARDED AS ONE OF the country’s leading heart surgeons, Dr. Richard J. Shemin took over the helm this year as chief of cardiothoracic surgery at UCLA. He arrived in Los Angeles from Massachusetts, where he was professor and vice chairman of surgery and chief of the cardiothoracic division at Boston University School of Medicine and co-director of the Cardiovascular Center at Boston Medical Center. At UCLA, he will have similar titles: professor of surgery and chief of cardiothoracic surgery, vice chairman of the UCLA Department of Surgery and co-director of the new Cardiovascular Center at UCLA.

Dr. Shemin earned his M.D. from Boston University School of Medicine and did his general-surgery residency at Harvard Medical School and Brigham and Women’s Hospital in Boston, and he completed his training in cardiothoracic surgery at New York University Medical Center.

UCLA MEDICINE: You came to UCLA with a very clear vision of what you want for the Division of Cardiothoracic Surgery.
DR. SHEMIN: My vision is to build upon the strengths of the division, which already is one of the best in the country, but also to develop areas of cardiac care that have not traditionally received as much focus. UCLA’s heart- and lung-transplant programs, for example, are among the best in the world, and our device program for supporting the heart, and even replacing the heart in the future, is positioned among the leaders. But there are other areas that are also very important that need further development. These include expanding our programs for congenital heart disease as well as in the realm of adult cardiac surgery – particularly where it involves minimally invasive approaches to valvular heart disease and aortic disease. Those are areas where I have an extensive background and expertise that will further enhance our ability to provide those services.

UCLA MEDICINE: How will the new cardiovascular center you plan for UCLA set us apart?
DR. SHEMIN: Cardiovascular centers are a very important way to provide care that is integrated across traditional academic department lines to efficiently deliver treatment for cardiac and vascular diseases in the outpatient and diagnostic setting. From the standpoint of the patient, there is a better consultation and communication with the physicians, which significantly improves the patient’s level of satisfaction. Another important focus of the cardiovascular center is to look for new ways that cardiologists, surgeons and vascular specialists can work together to provide training opportunities for residents across disciplines.

UCLA MEDICINE: Tell us about some of the significant research taking place at UCLA and where it might lead.
DR. SHEMIN: There is a tremendous amount of work being done in arrhythmia control and ablation procedures. A major advantage of a cardiovascular center is having our surgical team work together with our Arrhythmia Center cardiologists to investigate new approaches to treating arrhythmias, both medically and surgically.

With our interest in organ transplantation, we are working toward ways to improve methods to recover and preserve the organ until it is implanted into the recipient. We have pioneered technologies, not only to prolong preservation time, but also to reperfuse the organ with blood from the recipient once the organ is transplanted. We’ve also developed procedures to modify what is known as reperfusion injury, and UCLA has advanced techniques to help control organ rejection and to provide better ways to maintain and

“All this progress has been made in such a relatively short period of time, but I firmly believe the future is clearly as bright as the accomplishments of the past for the care of the cardiovascular patient.”
support the patient if severe rejection occurs.

In genetic, tissue-engineering and stem-cell research, we’re looking at mechanisms to regenerate cardiac muscle so patients with damaged hearts won’t require transplantation, or to stimulate the heart to improve its own blood supply through angiogenesis.

UCLA MEDICINE: UCLA is advancing its robotic-surgery program.

DR. SHEMIN: The whole movement to provide patients with less-invasive surgery is based on the premise that the smaller the incision and the less trauma you produce to the body, the less pain there is, the quicker the recovery and the faster the patient gets back to his or her life. Through very small incisions, a three-dimensional, high-definition camera and robotic instruments are inserted into the patient. The camera system allows us to magnify parts of the heart up to 15 times, and that gives us very good definition of the anatomy so we can perform very complex and exacting procedures. As a result, we can do wonderfully effective repairs to heart valves or blood vessels with very tiny incisions and rapid recovery times, which also leads to lowered healthcare costs. We predict that robotics will play an increasingly significant role in cardiac surgery.

UCLA MEDICINE: What other advances that will dramatically alter the field of cardiothoracic surgery are on the horizon, and where is UCLA poised to break new ground to advance the field?

DR. SHEMIN: Cardiovascular medicine continues to advance at a very rapid rate, and there are many new breakthroughs on the horizon. Probably one of the first that will appear in clinical practice is the use of percutaneous valves to replace diseased valves. Instead of having to go through a major operation, a valve can actually be collapsed and put in through an artery and inserted into its appropriate position in the heart after dilating the diseased old valve. We will be in a wonderful position to provide this technology safely to patients. Teams comprising a surgeon and interventional cardiologist are poised to work with the rest of the support team members in our new hybrid-procedure rooms in the new Ronald Reagan UCLA Medical Center.

In addition, we are collaborating on breakthroughs with our colleagues in the fields of nanotechnology and bioengineering. The Center for Advanced Surgical and Interventional Technologies (CASIT), a training and simulation center, focuses on advanced research and development of new surgical technology. And we are in the era of cardiovascular genomics. UCLA is conducting research in stem-cell medicine to provide opportunities to grow heart valves on scaffolds, to grow new heart muscle to replace scar tissue from heart attacks and to stimulate new blood-vessel growth in patients who have disease of their arteries.

UCLA MEDICINE: What are the most dramatic changes that you’ve seen in the field of heart surgery?

DR. SHEMIN: I have witnessed the development of reliable artificial heart valves and the reproducibly effective techniques to repair or replace diseased heart valves. There have been exciting developments in devices that support the failing heart. Today we are on the threshold of a new generation of very small artificial devices to support the failing circulation or to assist in complex procedures. We are on the threshold of the next generation of devices to perform total replacements of the human heart.

The surgical treatment of coronary-artery disease with the proven effective coronary-artery bypass operation and percutaneous approaches to the coronary arteries, particularly with stent technology, have made a successful impact on coronary-artery disease. There have also been major advances in our understanding of the basic mechanisms of disease that have led to new drugs, new therapies and new ways to prevent cardiac disease and disability.

Finally, all these advances coupled with improved intensive-care units and less-invasive approaches have led to cardiac patients living longer, with less morbidity. Patients are more active and experiencing higher qualities of life. All this progress has been made in a relatively short period of time, but I firmly believe the future is clearly as bright as the accomplishments of the past for the care of the cardiovascular patient.
Celebrate! It was an extraordinary moment in the history of UCLA and the City of Los Angeles when dignitaries, donors and community leaders gathered in June to dedicate Ronald Reagan UCLA Medical Center. By Tiffani Q. Mendinueto

UNDER A GLEAMING WHITE TENT, honored guests, including donors, dignitaries and community leaders, gathered on a sunny June 4, 2007, morning to mark what Gov. Arnold Schwarzenegger called “a proud moment for California and an exciting chapter in UCLA Medical Center’s five decades of excellence.”

Dr. Gerald S. Levey, dean of the David Geffen School of Medicine at UCLA and vice chancellor of UCLA Medical Sciences, launched the celebration of the end of major construction of Ronald Reagan UCLA Medical Center by thanking the many individuals who played a role in the project. First Lady Nancy Reagan, the widow of the new medical center’s namesake, President Ronald Reagan, was on hand to acknowledge Dr. Levey’s remarks.

Other speakers included the governor, Los Angeles Mayor Antonio Villaraigosa, former Gov. Gray Davis, Rabbi David Wolpe of Sinai Temple of Los Angeles, and architect C.C. Pei, who, with his father, I.M. Pei, led the design of the new hospital. “May this be a place to cure where possible, and to care always,” read Norman Abrams, UCLA’s acting chancellor, from a special proclamation he presented to the assembled dignitaries for their contributions toward the project.

As a Bruin and now mayor of Los Angeles, Villaraigosa spoke of his pride in UCLA’s accomplishment, and he acknowledged the dedication “in memory of a man who, in my time in public life, probably best represents the hope and optimism that is the American spirit, Ronald Reagan.”

After the opening remarks, guests entered the new 1-million-square-foot medical center, which also is home to Mattel Children’s Hospital UCLA and the Stewart and Lynda Resnick Neuropsychiatric Hospital at UCLA, for refreshments and tours of a patient floor, the emergency room and operating rooms, as well as spaces in the expansive first-floor lobby. Guests exclaimed “amazing” and “incredible” as they walked through the light-filled spaces.

Special guests at the dedication – as well as at subsequent celebratory events during the week – included volunteer animal handlers with their trained dogs, demonstrating how therapy animals can assist in the healing process.

Equipped with the latest in cutting-edge technology, the 10-story Ronald Reagan UCLA Medical Center was designed to create the sense of several smaller hospitals rather than one monolithic facility. Designed with the “principal objective to create an environment of healing,” as proclaimed by principal architect I.M. Pei, the warmth of the entire facility is conveyed through its lush gardens, open terraces and wide windows that surround the lobby and upper floors – allowing natural light to flow throughout.

Ronald Reagan UCLA Medical Center is scheduled to open to patients in 2008.

To read the complete transcript of dedication remarks and view a video, go to www.uclahealth.org/dedicationdayspeech
(CLOCKWISE FROM TOP CENTER) First Lady Nancy Reagan listens with Gov. Arnold Schwarzenegger to opening remarks; Dean Gerald S. Levey offers his greetings; L.A. Mayor Antonio Villaraigosa speaks of his pride as a Bruin; architect C.C. Pei talks of the building and new beginnings; “May this be a place to cure where possible, and to care always,” says Acting Chancellor Norman Abrams.

(LEFT, CENTER) Guests continued the celebration after the dedication ceremony. (RIGHT) Chair of Surgery Dr. Ronald W. Busuttil (at right) enjoys the event with alum and donor Ralph Shapiro.
HEART OF GOLD

Three patients, three stories of how UCLA’s cardiology and cardiac-surgery programs are changing the course of people’s lives.

By Dan Gordon

Illustrations by Penelope Dullaghan • Photograph by Pete McArthur
AS THE PLANE she and her husband had boarded in Maui for their flight to Los Angeles began its ascent, Debbie Iida stared pensively out the window. Looking down at the picturesque Hawaiian Islands with Harold in the seat next to her, she thought about what a good life they had. Their five children were nearly all raised, and Harold, at 63, was about to retire from his job in the printing department of the local newspaper. One daughter was weeks away from graduating at the top of her college class. A son would be getting married later in the year.

Now, with a one-way ticket to the mainland, where her husband would undergo an intricate operation at UCLA to repair a leaking valve in his heart, Debbie Iida was quiet. “I looked down and couldn’t help thinking, ‘Please let us come back to this same exact life,’ ” she recalls.

Tom Cohan wanted a different life – one without the constant specter that his implanted cardioverter defibrillator (ICD) would unexpectedly jolt him with powerful electrical currents. The ICD was meant to shock Cohan’s heart back to its normal rhythm when he went into life-threatening ventricular tachycardia. But before Cohan was finally referred to UCLA, the excessive firings – as often as twice a day – had created a life of misery for the self-employed businessman, still only in his early 50s.

“It felt like you were being shocked by a 220-volt line,” Cohan says. “I never wanted to be in public because I knew that when it fired I would have to dive to the floor, and I would usually shout out a cuss word or two.”

Edward Cooper figured he was living on borrowed time. His heart had gone through the wringer – three heart attacks, the first in the late 1970s, when he was still in his 30s. On more than one occasion, paddles had been required to shock his heart back into action. He had been told that little could be done about his condition, short of trading in his weakened heart for a new one. The extent of scarring in his heart muscle made bypass surgery problematic.

After yet another attack of angina, Cooper was airlifted from a community hospital in Bullhead City, Ariz., to Santa Monica and transported by ambulance to UCLA, where, after extensive testing (“I was introduced to machines I didn’t even know existed,” Cooper recalls), he was offered the opportunity to participate in a clinical trial: Would Cooper like to be the first patient in the United States treated with cell transplantation – a therapy in which the patient’s own skeletal cells were implanted in the heart in an effort to promote recovery in the damaged areas?

Cooper didn’t hesitate. “Where do I sign up?” he asked.

Today, the Iidas have returned to living the good life on Maui. Cohan is back to working up to 60 hours a week while also setting aside time for regular trips to the gym and frequent travel with his wife. As for Cooper, he required a heart transplant two years after the experimental therapy; fortunately, he was a patient at one of the nation’s largest and most successful heart-transplant programs, UCLA Medical Center. With a new heart beating in his chest and a new lease on life, Cooper is now in active retirement in Laughlin, Nev., where he is a member of the Town Advisory Board, the Metropolitan Volunteer Police and the Volunteer Homeland Reserve Unit.

These, and countless other, patients might not be alive today, much less leading normal, active lives, were it not for the world-class cardiology and cardiac-surgery clinical programs and research of a comprehensive center like UCLA. Individually, the programs in cardiac surgery, interventional cardiology, electrophysiology, heart failure, heart transplantation, cardiovascular imaging and cardiovascular research are world leaders. But as Iida, Cohan and Cooper learned, the whole of UCLA cardiac care is far greater than the sum of its parts.
FOR THE FIRST FIVE DECADES OF HIS LIFE, Tom Cohan was healthy as a horse. That changed dramatically beginning in March 2002, not long after he turned 52, when Cohan suffered a heart attack. A month later, a routine sigmoidoscopy revealed that he had early-stage colon cancer. After surgery to remove the tumor, he resumed normal activities – until November of that year when, while working in the yard of his home near Los Angeles, he passed out. It happened again the next day.

Cohan was checked into an area hospital so that his heart could be monitored to determine the cause of the syncope. Several days later, he went into cardiac arrest. Cohan was given an angioplasty, and an ICD was implanted, designed to fire when it needed to save him from any more episodes of ventricular tachycardia – the life-threatening rapid heart beats that had caused him to faint. He had only been home a couple of days when he began to experience the first of what would become regular ICD firings. After several readmissions, more angioplasty and various drug regimens failed to improve his condition, he was sent to UCLA for evaluation for possible heart transplant.

At UCLA, Cohan was seen by Dr. Gregg C. Fonarow, director of the Ahmanson-UCLA Cardiomyopathy Center, who ordered a series of diagnostic tests designed to determine how to better manage his heart failure and whether coronary-artery-bypass surgery might be possible. In addition to the expertise of his center’s team, Dr. Fonarow had the advantage of being able to access state-of-the-art imaging tools for diagnosis. To tackle Cohan’s repetitive ICD firings, he had another vital resource: the electrophysiologists at the UCLA Cardiac Arrhythmia Center.

Several million Americans have cardiac arrhythmias – problems with the electrical system that controls the heartbeat. Though most arrhythmias are benign, atrial fibrillation, one of the most common heart problems seen by physicians, increases the risk of clots and strokes when untreated. Medications traditionally used to treat rhythm disorders are often ineffective and can have significant side effects. Radiofrequency catheter ablation has emerged as an important treatment – under X-ray guidance, one or more catheters are inserted into the blood vessels and directed toward the heart muscle, then radiofrequency currents are applied through the catheters to electrically alter the structure of the heart’s atrium, destroying the heart-muscle cells that cause the arrhythmia. “This is one of the major advances in cardiology, and more patients with these conditions need to be made aware of that,” says Dr. Kalyanam Shivkumar, director of the UCLA Cardiac Arrhythmia Center. But few centers are able to perform the ablation technique with consistently good results.

Fortunately for Cohan, he was at one that could. Working as a team, Dr. Fonarow and Dr. Shivkumar fine-tuned the programming of Cohan’s ICD and altered his medical management. Meanwhile, Dr. Fonarow’s team concluded that the bypass surgery that previous doctors wouldn’t attempt on Cohan – his ejection fraction was in the 20-percent range, low enough that in the hands of a less-experienced team the risk of fatal complications from bypass surgery would be considered too high – was, in fact, feasible. During the bypass, Dr. Shivkumar’s team would map Cohan’s rhythm problem to determine the region of origin and ablate intraoperatively.

Heart transplantation is a remarkable advance that, particularly when performed at top transplant centers such as UCLA, has transformed patients from near-death to normal lives. But given the limited supply of organs, the necessity of immunosuppressive drugs and other factors, it is always preferable when patients can keep their own hearts. Today, Cohan has his own heart, and it is beating in rhythm, without the ICD shocks that once plagued him. “With state-of-the-art facilities for diagnosis and management, along with top surgeons, electrophysiologists and cardiologists with expertise in heart failure, we were able to manage Mr. Cohan with revascularization, medication adjustments and follow-up care so that he avoided heart-transplant surgery that otherwise would have been urgently indicated,” Dr. Fonarow says.

With its cutting-edge research and sophisticated clinical programs, UCLA tends to serve as cardiology’s version of the court of last appeal – the place where the most difficult cases are sent in search of answers that have eluded the community. But Dr. Fonarow stresses that tending to the sickest of the sick using the most-advanced diagnostic and therapeutic tools doesn’t come without equal attention to the less flashy but equally important facets
of comprehensive care for all patients, including lipid management, patient education and family support.

Indeed, during his recovery, Cohan has benefitted from the approach to heart-failure disease management pioneered by Dr. Fonarow and colleagues at UCLA – including the use of multidisciplinary teams of cardiologists and advanced-practice nurses, which was shown to improve patients’ outcomes and reduce the risk of hospitalization for heart failure by 85 percent.

“What we have learned from caring for patients with the most advanced heart disease has helped us develop programs to benefit a broad group of cardiovascular-disease patients, even those with very early disease,” notes Dr. Fonarow. Findings from CHAMP (Cardiovascular Hospitalization Atherosclerosis Management Program) at UCLA have become the basis of the American Heart Association’s “Get With the Guidelines” program, which has been implemented by more than 1,400 hospitals nationwide to help ensure that the care they provide to coronary-artery disease, stroke and heart-failure patients follows the latest scientific evidence.

BEFORE ARRIVING AT UCLA, Edward Cooper had been told that the extensive scarring in his heart muscle rendered bypass surgery problematic. At UCLA, that meant he was a candidate for the clinical trial being run by Dr. Fonarow and Dr. W. Robb MacLellan, director of the UCLA Cardiovascular Stem Cell Research Center.

On May 29, 2001, Cooper became the first person in the United States to receive cell injections in the heart muscle during bypass surgery. It was an effort to buy him more time before a transplant would be necessary.

The Phase I trial, designed to test the feasibility and safety of the procedure, involved taking Cooper’s progenitor cells (early cells with the capacity to turn into muscle), growing them in cell culture and then injecting them back into Cooper’s heart at the time of the bypass.

“We don’t have perfect treatments yet for most heart diseases,” says Dr. James N. Weiss, chief of the UCLA Division of Cardiology. “A community hospital can be excellent at implementing the known therapies, but here we can offer patients the next level – what’s not yet an established treatment but is looking very promising.”

Cellular therapy is just one of many research strategies under investigation in UCLA’s cardiology and cardiothoracic-surgery programs, and the breadth and depth of the university’s expertise on the topic – from the cell biologists and bioengineers to the interventional and surgical researchers – illustrates why the institution is strongly positioned to capitalize on what Dr. Weiss sees as a particularly exciting time for the field. “We’re in a period in which the basic-science advances are starting to merge with the clinical investigations in ways that are going to directly affect the future of cardiovascular care,” he says.

Many of the treatment approaches under investigation are aimed at the increasingly common problem of heart failure: from cellular therapy and new drug therapies to new medical devices and improvements in heart transplantation. Others are focusing on arrhythmias, where catheter ablation and the development of new pacemaker-type devices to monitor the heart are among the most-promising strategies. UCLA’s interventional cardiologists and cardiac surgeons are at the forefront of the use of implantable mechanical devices for new purposes, including replacing heart valves and closing holes in the heart. The interventional cardiology and cardiothoracic-surgery programs are beginning investigations toward the ultimate goal of placing artificial heart valves using a catheter approach.

Work in vascular biology by a group headed by Dr. Alan M. Fogelman, executive chair of the Department of Medicine and director of the Atherosclerosis Research Unit, is yet another example of UCLA’s broad approach to addressing the issues of heart disease. Dr. Fogelman and his group have built upon an exceptional record of pioneering work at UCLA to develop a new strategy for protecting the heart against atherosclerosis. As part of that effort, research by Dr. Judith Berliner and Dr. Andrew Watson has elucidated the role of oxidized lipids in the inflammation that causes coronary heart disease. Following that lead, Dr. Fogelman found that for people with certain forms of atherosclerosis, high-density lipoprotein (HDL, so-called “good” cholesterol) increases the inflammation caused by oxidized lipids. Working with scientists at the University of Alabama at Birmingham, Dr. Fogelman and his UCLA colleague, Dr. Mohamed Navab, embarked
on a program to find molecules that mimic Apo-A1, the major protein associated with the good qualities of HDL. Their search led them to 4F, a peptide that has dramatically reduced arterial-plaque buildup in animal studies and is proving to be promising in early clinical trials that are ongoing.

As for cellular therapy, the results have been mixed. A number of clinical trials have been completed, and Phase II studies, using cells from different sources, including bone marrow, are in progress. “There have been studies that have shown exciting positive results and a number of negative ones, though no study has shown harm to patients,” says Dr. MacLellan, who is currently conducting research in the laboratory aimed at learning more about which cell types are best and which patients are most likely to benefit from the therapy.

After the bypass and cell injections, Cooper responded well. He went on with his life for two years, taking his medications and making regular visits to UCLA, where Dr. Fonarow and Dr. MacLellan closely monitored his condition. By the end of 2003, his heart had begun to weaken, and he went back on the transplant list. The call came 10 months later: A 23-year-old man was brain-dead from an accident while driving a truck; Cooper would receive his heart. He couldn’t have picked a better place for the life-saving operation. Survival rates for UCLA’s heart-transplant populations are considerably higher than the national average, and it’s no accident: It comes from the program’s basic and clinical research that has improved outcomes for patients, along with the experience that comes from having one of the world’s largest-volume programs.

HAROLD IIDA’S DOCTOR HAD THE STETHOSCOPE on his chest during a routine examination when she noticed something was awry. “She said, ‘Do you know you have a heart murmur?’ ” Iida recalls. It was the first Iida knew of any problem. He felt good – walked every day with no shortness of breath. His doctor referred him to a cardiologist, who told Iida he had leakage of the mitral valve – the valve, situated between the left atrium and left ventricle, that regulates blood flow between the chambers. There was nothing to worry about yet, but he should return for regular checkups. Over the next two years, Iida began to tire more easily. Eventually, his cardiologist told him the leakage of his mitral valve had become severe; part of the valve had ruptured and was prolapsing. Iida’s heart was enlarging to accommodate the leakage, and was beginning to deteriorate. It was urgent that the valve be repaired or replaced.

In the past, patients in Iida’s condition had their valves replaced with artificial devices, but more recently top heart surgeons have often been able to repair the valve tissue using special techniques. Iida’s cardiologist learned that UCLA had just recruited as the chief of its Division of Cardiothoracic Surgery Dr. Richard J. Shemin, a leading heart surgeon from Boston known for doing complex valve repairs using a minimally invasive approach enhanced by surgical robotics. She referred Iida to Dr. Shemin as a candidate for the first such procedure ever done at UCLA.

Unlike traditional surgery, which opens the chest to direct visualization and manual manipulation, the surgery on Iida would involve a three-inch incision to insert a camera for magnified vision; then, working through tiny holes to cut and sew, and aided by robotic devices that move more precisely than the surgeon’s hands that control them, the valve is repaired. “For the patient, the surgery hurts less, recovery is faster, length of stay in the hospital is often reduced and, because we work between the ribs as opposed to opening the sternum and cutting through any bone, the patient loses less blood so there is not as much need for postoperative transfusion,” Dr. Shemin explains. “And as far as the ability to achieve a durable repair of the valve, the results are equivalent to traditional open surgery.”

But not many robotic mitral-valve surgery programs would have tackled a case as complex as Iida’s. Mitral valves have two moving parts, called leaflets. Most repairs involve only the posterior leaflet; Iida’s heart needed both the posterior and the anterior leaflets fixed to get the valve to close and function normally. With Dr. Shemin on the UCLA faculty, there was now expertise in this complex, minimally invasive repair.

A writer of novels, Debbie Iida was fastidious about doing her research, and she liked what she had read about the minimally
invasive robotic approach Dr. Shemin would be taking. At the same time, she saw a certain irony. “Here we were, practically off the grid living in Maui – we’re simple people who still hang our clothes outside to dry – and Harold was going to an outer edge of medicine.” She was reminded of that as she sat in the waiting area nervously anticipating any news about the surgery. “After two hours, a nurse called to tell me they had rolled in the robot and the procedure was under way,” Debbie Iida recalls, laughing. The tension was momentarily broken. “I thought, this is just too much!”

Harold Iida was prescribed pain medication to make him more comfortable during his recovery, but he never needed it. He soon resumed his normal 45-minute walks at his usual brisk pace. “The valve is now working perfectly normally, with no residual leakage,” says Dr. Shemin. In the vast majority of mitral-valve repairs, he notes, the valve continues to hold up even a decade after the initial surgery.

As the plane she and her husband had boarded in Los Angeles for their flight to Maui began its descent, Debbie Iida looked out the window and reflected on the successful journey. They had spent 19 days in L.A. – the longest they had ever been away from home – and now they were returning to the life they had known, just as she had hoped. With a feeling of overwhelming relief, she looked down at the island and its deep-blue waters and white-sand beaches. It was even more beautiful than she remembered.

Dan Gordon is a freelance writer in Los Angeles and a regular contributor to UCLA Medicine.
Profile in Courage

A virulent infection when she was 8 years old took her legs, an arm and part of her remaining hand. But in spite of her handicaps, Kellie Lim endured to graduate UCLA medical school this spring and start her pediatric residency.

By Anne Burke 📷 Photography by Duncan Stewart

“I just got it!”

Dr. Kellie Lim beams as she announces this over a cup of coffee at Starbucks. She digs around in her handbag and pulls “it” out – a brand new UCLA Health System ID badge. Her old one said “medical student.” This one reads “resident physician: pediatrics.”

That badge would entitle anyone to bragging rights but Dr. Lim, 26, has more reason than most to be proud: When she was 8 years old, her legs, right arm and several fingers on her left hand had to be amputated as a consequence of meningococcemia, a rare bacterial infection that almost took her life.

During commencement at the David Geffen School of Medicine at UCLA this past spring, her father, Norman, siblings Nellie and Tarring, and close friend Rupa Narayan cheered as the newly minted Dr. Lim, M.D. ’07, strode across the stage in high heels fitted onto prosthetic legs. Missing that afternoon in Perloff Quad was Dr. Lim’s mother, Sandy, who died during her daughter’s first year of medical school. Her mother, who was blind, had urged Dr. Lim to never let her disability interfere with her dreams of becoming a pediatrician.

Dr. Lim embraced her mother’s counsel. Intensely driven and focused even as a child, she was valedictorian at her Warren, Mich., high school, and scored above the 90th percentile on the MCAT exam. At UCLA, a stellar performance earned her the John M. Adams Award, the top honor for excellence in pediatrics.

The rigors of medical school now behind her, Dr. Lim has thrown herself headlong into an even tougher challenge – a pediatrics residency at Mattel Children’s Hospital UCLA, with a possible specialization in childhood allergies and infectious disease.

“I’m really looking forward to it, but I know it’s going to be difficult,” Dr. Lim says. “It might take me just a smidgen longer to do things than other people but that’s fine.”

Dr. Edward R.B. McCabe, Mattel Executive Endowed Chair of
DR. LIM SPEAKS MATTER-OF-FACTLY about her disabilities without dwelling on them. “I’m healthy now, and that’s all that really matters,” she says. In the hospital and exam room, Dr. Lim has a confidence and easy manner that make her patients and their parents forget about her missing limbs.

Her prosthetic legs give a slight bounce to her step but are otherwise nearly imperceptible under long pants. She lives alone, drives a car with the aid of a knob on the steering wheel, recently went surfing for the first time and has gone tandem skydiving. To her many friends, her physical condition has long ago faded into the background of their relationship with her, to the point where they hardly think about it anymore.

“What’s so remarkable about Kellie is that there’s nothing remarkable about her,” says Dr. Neil Parker, the senior associate dean of student affairs at the Geffen School. “She’s just the same as everyone else.”

Dr. Lim has but dim memories of being stricken with meningococcemia. The night before she got ill, she fell asleep much earlier than usual. In the morning, 11-year-old Nellie tried to rouse her sister. Lim was too tired to move so Nellie dragged her out of the bedroom. Norman and Sandy Lim thought their daughter was just under the weather so they went ahead with a planned visit to grandmother’s house. But Lim worsened. Her tears and saliva turned bloody, and hemorrhagic lesions broke out on her body. At Beaumont Hospital in Royal Oak, Mich., doctors quickly diagnosed meningococcemia, a highly communicable infection that could kill her within hours.

Meningococcemia attacks about 2,500 to 3,500 people in the United States each year. Lim’s case was especially severe. With toxins ravaging her extremities, surgeons amputated both legs below the knee, her right forearm and three fingertips on her left hand, leaving intact her thumb and ring finger. The surgery was so extensive that Norman Lim donated skin to graft onto his daughter’s legs. Lim teetered between life and death. Years later, when she was grown, she returned to Beaumont Hospital to read her medical report. She had no idea that doctors had given her only a 15-percent chance of surviving. “We are very fortunate to have Kellie with us. This was a severely life-threatening infection,” notes Dr. McCabe, who has treated children with meningococcemia.

After four months in the hospital, Lim went home. That was July 1989. When school started up in September, the youngster was in her regular classroom, bright-eyed and eager. At home, Norman and Sandy Lim, both immigrants from China, encouraged but did not coddle their younger daughter. Dr. Lim recalls a normal childhood – playing, fighting with her sister, getting bumps and bruises and harboring secret fantasies of life as a pop singer.

Over the years, she has returned many times to the operating room for surgery on her legs. Just before starting medical school, she underwent final surgical revisions to her legs. “I’m done!” Dr. Lim says jubilantly. Though she continues to suffer from leg ulcers caused by too much walking, she does not complain. Nellie Lim says she cannot recall her sister ever feeling sorry for herself.

SANDY LIM LED BY EXAMPLE. Blind by age 20 due to retinitis pigmentosa, Dr. Lim’s mother ran a household, raised three children and got around without a cane. Norman Lim, no less an inspiration to Dr. Lim than his wife, supported the family as a chemical engineer who owned a water-treatment company. At Beaumont Hospital, where Sandy Lim kept vigil at her daughter’s bedside, the mother planted a seed that would bear fruit 18 years later. “Wouldn’t it be great to be a pediatrician? They’re so nice and so smart and they saved you!” Dr. Lim recalls her mother telling her. Two years later, a newspaper reporter asked Lim what she wanted to be when she grew up. Her answer came quickly: “A pediatrician.”

Lim majored in biology at Northwestern University. She still wanted to become a doctor but doubts nagged at her. To keep her options open, she took the GRE and LSAT exams as well as the MCAT. She scored highest on the latter. But could she get into medical school? Lim had no idea so she started calling admissions offices. She was forthcoming about her disabilities. An admissions counselor at a top-tier school she declines to name told Lim that with her physical disabilities, “we don’t think you’ll be able to do the things you need to do in medical school,” she recalls.

At first Lim let it go but in time she got “really mad.” What rankles her more than just about anything is when someone makes assumptions based on her physical condition about what she can or can’t do. Lim called the admissions counselor back and demanded to know the identity of the school official who had judged her unfit. “They emailed me and said, ‘Oh, sorry, we didn’t mean that.’” Lim applied and got in. In all, she was accepted to six medical schools; she chose UCLA.

“She made it clear to me that she wanted to be judged like anyone else,” Dr. McCabe says.

SHORTLY AFTER DR. LIM BEGAN HER RESIDENCY this summer, she ran into Dr. Parker in the hospital cafeteria. The two took the
opportunity to catch up over lunch. As they got up to leave, Dr. Parker’s first instinct was to pick up both lunch trays, but Dr. Lim beat him to it. “She just said, ‘I’ll take your tray,’ so I just threw my (garbage) on top of it,” Dr. Parker recalled. Later, it occurred to the senior associate dean how he must have looked letting a woman with only one good arm clean up after him. But the important thing was not what other people thought, Dr. Parker realized. It was what Dr. Lim thought, and she didn’t want or need help putting away cafeteria trays.

“You can’t think, ‘She has a handicap, and therefore I’m going to help her,’ because you’re not helping her that way,” Dr. Parker says. “You can’t put your idea of what a good deed is on somebody else.”

It took Dr. Parker a while to realize that. At first, he thought it was his duty to help Lim the student figure out how to get through medical school. Dr. Parker suggested Lim wear the arm prosthesis that she had long since abandoned so she could do certain procedures, like a chest percussion, that require two hands. He had certain ideas about other adaptive devices she might use.

Dr. Parker concedes that his attitude caused some tension between the two. Dr. Lim says she wasn’t averse to getting help but if she didn’t need it, it was just an unnecessary complication. She had been getting along fine without her arm prosthesis and saw no reason to start wearing it. The percussion problem was solved with a device, built for her by a prosthetist at the Los Angeles VA Medical Center, that she straps to her residual arm to tap a patient’s chest. Using a stethoscope and otoscope were no problem. She drew blood with the agility of her two-handed classmates and was able to tie suture knots, though perhaps “not the best suture knots,” she laughs.

Her determination and skill impressed Dr. Robert L. Roberts, who supervised Lim on her pediatric allergy and immunology rotation. He acknowledges he initially had some reservations – “I was kind of apprehensive about how she would be able to examine patients and how they might react to her,” he says – but those concerns quickly were put to rest. “She did a really good job,” Dr. Roberts says. “All the patients and their parents seemed to have a very positive experience with her. There were no negative reactions at all.”

True, she can’t do everything. Surgery and intubation are not options. But Lim wouldn’t have much call to do them, anyway. Her biggest problem as she finished medical school seemed to be trying to balance her workload with a flood of media attention. The story of the gutsy young medical student who defied stereotypes was all over TV, newspapers and the Internet. Camera crews trailed after her. Dr. Lim was a “Person of the Week” on ABC World News with Charles Gibson, and was featured in People magazine and the Los Angeles Times. It was fun at first, but became wearying and a distraction after a while.

DURING HER FINAL WEEKS IN MEDICAL SCHOOL, Lim did a routine check-up on Bethany Schramm, a 7-year-old with food allergies. In the exam room, Lim lowered herself to Bethany’s eye level and directed her questions to her young patient rather than her mother, Elaine Hussey, who had brought the second-grader to Mattel Children’s Hospital UCLA. Lim let Bethany listen to her own heart with a stethoscope. Before touching Bethany, she sanitized both her left hand and residual arm.

It seemed to Hussey that Lim was not only comfortable around Bethany but also with herself. But more than that, knowing what had happened to Lim as a child, Hussey had a sense that the future Dr. Lim would be the best pediatrician for Bethany.

“She knows firsthand how devastating a childhood illness can be, and I just feel that, if something were to go really wrong, Kellie would be more likely than other doctors might be to chase down every possibility. Maybe that’s not fair of me, but I just think that,” Hussey says.

When Lim was in the hospital as a child, her father took a family photo that says as much about her as anything else. In the picture, the 8-year-old Lim sits erect in a wheelchair wearing a bright yellow hospital gown, her shiny black hair falling to her shoulders. Sandy Lim, holding baby Tarring, and Nellie stand behind her. Lim’s three amputated limbs are swathed in white bandages, her tiny leg stumps stick straight out. But what really grabs one’s attention is not the devastation to Lim’s young body. It is the enormous smile on her face.

Anne Burke is a freelance writer in Los Angeles. Editor’s Note: It is the usual practice of UCLA Medicine to use the honorific title Dr. in all references before the names of persons who have earned M.D. or Ph.D. degrees. In this article, we alternate between applying the honorific and not applying it to Kellie Lim to distinguish the period before she earned her M.D. from the present.
HUMB THROUGH ANY DICTIONARY and the definition of anatomy usually centers on the “structure” of living things. Certainly, the 16th-century Flemish physician Andreas Vesalius, whose intricately detailed illustrations of dissected cadavers dared to break with the ancient Greek anatomist Galen and earned him the title “father of modern human anatomy,” wouldn’t quibble with that. But “anatomy” – from the Greek ana, up or through, and tome, a cutting – has, like medicine itself, been dissected into so many specialized branches that any mention today of framework without clinical relevancy is unlikely.

UCLA has a lot to do with that. Anatomy’s current role in medical education traces back to a handful of UCLA scientists who sought to link structure and function within that most complex of machines: the human body. In the school’s early years in the 1950s, department chair Dr. Horace Magoun was embracing anatomical advances like electron microscopy and radiobiology, establishing a forward momentum that still thrives today. One visit to anatomy’s new integrative-design center, where an entire human skeleton is being created with 3-D computer animation, reveals the future is happening right now at UCLA.

As for those anatomy pioneers still on campus, one name stands out. Dr. Carmine D. Clemente had just received his Ph.D. from the University of Pennsylvania when Dr. Magoun asked him to come to Westwood five decades ago. How essential has this 79-year-old educator, author and researcher remained to both the David Geffen School of Medicine at UCLA and to the broader medical community? Last year, Dr. Clemente received the Association of American Medical Colleges Alpha Omega Alpha Distinguished Teacher Award, even though he technically retired 13 years ago. (Dr. Clemente is an emeritus professor of anatomy and neurobiology and has been annually recalled to teach first-year students. His 1973 book, Anatomy: A Regional Atlas of the Human Body, is one of two revered anatomical texts, the other being Gray’s Anatomy, whose U.S. edition was given an overhaul by Dr. Clemente in 1985.)

There is also the series of 42 short films on dissection Dr. Clemente created with two UCLA students in the early 1960s, and the more than 200 papers published along the way. From 1976-1987, Dr. Clemente was the director of UCLA’s Brain Research Institute, and he also lays claim to being the first medical educator at UCLA to create lecture notes for his students (back in 1980). He taught anatomy to surgical residents at King/Drew Medical Center every Monday evening for 36 years, and has presided over the American Association of Anatomists, the premier organization of both clinical and research anatomists. A more impressive list of medical benchmarks can’t be found but rattling off career highlights only makes this cheerful scientist blush. After all, Dr. Clemente is still busy helping UCLA redefine
Imagine being able to see every fused bone of the human skull, grouped by color and mass, and rotating in three dimensions on your video iPod, just hours before seeing the real thing in the gross-anatomy lab. It may sound like a new Xbox game, but Drs. Shelley Metten and Jonathan Wisco are making it a reality in the new anatomy integrative-design center—a cross between a NASA control room and a spiffed-up video arcade.

“We’ve been working on the bones for about a year,” Dr. Metten says proudly. In the center of the room, a large LCD screen beams out an amazingly lifelike replication of a human skeleton. “After we finish, we’ll add the ligaments, and be able to show disc herniations in a progression,” she continues. “We can then take that to a histology level or a clinical level, which is just so cool.”

Cool is an understatement. The new computerized study includes click-on Latin origins, anatomic radiographs and interactive moveable pieces, modeled from scratch for UCLA’s unique curriculum.

Dr. Metten arrived at UCLA (for the second time) in 2005, at a time when anatomy had been folded into the pathology and laboratory-medicine department, and clinical relevancy was the focus. “When I became director of the Division of Anatomy in 2005, the greatest challenge was to make the much-reduced anatomy curriculum more tech-friendly,” she says.

To do that, Dr. Metten, with the help of a very forward-thinking Department of Pathology chair, Dr. Jonathan Braun, built upon the work of faculty members like Dr. Joseph Miller, who created internal “hyperlinks” in his PowerPoint lectures that would provide anatomy students with an interactive, “Web page”-like experience. “I wanted to provide something different than just clicking on slides from beginning to end like a photographic slide show,” notes Dr. Miller, who chairs the gross-anatomy course for first-year dental students. “The hyperlinks allowed me to set up flash-card experiences, and link to optional and enriching information that the students choose to follow as they like, just like navigating in and out of Web pages on the Internet.”

Even with advanced teaching tools like the kind Dr. Miller created, Dr. Metten still had to reorganize the program’s budget, hire professional animators and then, somehow, fold the new 3-D materials into the lab experience.” Dr. Wisco, who was hired as an anatomist who could help integrate the new digital curricula, helped assemble portable stand-up computers (dubbed “robots”) that students would work with interactively in the lab. “One advantage to using digital media,” Dr. Wisco notes, “is the ease with which it can be changed to incorporate new ideas and technologies. The Flash software platform we use has a steep learning curve but it’s very powerful and flexible.”

Dr. Wisco cites one directive file that asked students to compare a CT scan of a cross section of the thorax (through the heart) with the atlas picture of the same view. “Both the radiograph and the figure were labeled by our animation team for specific structures,” he elaborates. “Students were able to click on buttons that showed and hid the labels. Then, we directed the students to find the cross-sectional level shown in the radiograph and figure on the cadaver and palpate the structures.”

Though such technological advances have opened up a world of new possibilities for instruction, dissection still remains at the heart of anatomy. “The technology enables the student to have a better understanding of the basic floor plan,” says Dr. Metten. “But the exploration of the cadaver will always be the most essential piece in the learning process. You still need to get your hands involved and be able to touch a nerve and explore the pancreas nestled within the bend of the duodenum for it to be forever embedded in your mind.”

– David Geffner

Anatomy’s Next Wave
system. He remembers how Dr. Magoun was often teased about having the finest collection of neurophysiologists ever seen in a department of anatomy. "We had three areas to teach in those days," Dr. Clemente recalls. "Neurology, microscopic and gross anatomy. Since there were so many neuroscientists, the need was for gross anatomists, and that's where I went. I loved getting to know the first-year students. Gross anatomy is the first time they get to know their own bodies."

DISSECTION OF AN EMBALMED HUMAN CADAVER and its subsequent observation with the unaided eye – i.e., gross anatomy – is at the core of medical education, and Dr. Clemente brought modern technology into the teaching process. "We used to demonstrate with a prosected specimen (a body already dissected by a faculty member), with only a portion of the class at the table," he recalls. "Two of my students, Herb Harwick (M.D. '64) and Lou Mahoney, came to me with the idea of making dissection films as study aids. Lou was one of the best dissectors in the class, and Herb had an uncle in Hollywood who knew lighting. I edited all the films, which were 10 minutes long and in color, and added the voice-overs. By the time we finished, they were in 171 schools around the world!"

Dr. Clemente credits his popularity at UCLA to "having made a nice book with really good pictures." But Dr. Charles Slonecker, a former chief of anatomy at the University of British Columbia and a past president of the American Association of Anatomists, says Dr. Clemente's teaching aids stand alone. "Carmine resurrected the old Sobotta drawings, which were used in Germany many years ago, and grouped them by regions of the body," Dr. Slonecker notes. "He had a genius for knowing what plates to include in his book and how to present the material in a clear and relevant way."

The 2006 recipient of the Glaser Award (the highest-paying honor in education) also maintained a lifelong respect and empathy for his students. Dr. Clemente tells a story about a first-year dental student from the former Soviet Union who, upon entering his gross-anatomy lab, began weeping uncontrollably at the sight of so many cadavers. "I gently took the young woman into the hallway and patiently explained about the willed-body program Dr. Magoun had begun in the 1950s," he recalls, "and how each specimen was a public-spirited citizen who voluntarily willed his or her body toward science. I urged her to go home, and return when she was ready. I promised to help her through the dissection process until she was comfortable." Dr. Clemente says the young woman was still emotional when she came back. But in a few weeks she became one of the best dissectors in the class, and today she is a dentist.

Listening to how students want to be taught is a legacy Dr. Clemente passed down to the current anatomy faculty. His former student, Dr. Robert Trelease, was the first professor in the medical school to use computer presentations, employing a 3-D animation of a surgical repair of a cleft palate to instruct residents more than 20 years ago. Dr. Trelease, who once ran the anatomy program, talked about the benefits of dissection in the context of computer teaching aids in a 2002 Newsweek article about UCLA medical school's embrace of high technology.

Like Dr. Clemente with his dissection movies four decades ago, and Dr. Trelease with his PowerPoint presentations to teach anatomy years before the technique became commonplace, Dr. Shelley Metten, vice chair of programmatic instruction and director of the Division of Anatomy for the Department of Pathology and Labora-
Anatomy From the Inside Out

A former chief of general and emergency radiology at UCLA Medical Center, Dr. Michael Zucker traded his clinical-practice work for a unique position integrating radiology into the medical school’s pathology and anatomy teaching blocks. Having practiced and taught internal and emergency medicine, as well as radiology, Dr. Zucker explains, “I’d seen the lack of anatomy knowledge by residents and senior medical students. Either they needed refreshing or never learned it, so the need was obviously there.”

Dr. Zucker started teaching at UCLA in July 1990, and says his method has been to first show his radiology students what “a normal” was in the human body before venturing into specific radiographic pathologies. That meant detailed anatomy was always a part of his lectures. Nowadays, he can see a pronounced before-and-after effect among his students. “The knowledge of anatomy is better among the younger students than ever before,” he offers. “I had some fourth-year students sit in on my lectures, and they said they possessed nowhere near that level of information when they first came in, because the radiology/anatomy parallel track didn’t yet exist.”

Not that Dr. Zucker is satisfied. He and Dr. Shelley Metten, vice-chair of programmatic instruction and director of the Division of Anatomy in the Department of Pathology and Laboratory Medicine, have made changes throughout the program, with this year’s goal being to include more radiology for second-year students. Their cutting-edge approach may one day be standard in medical schools around the country, but Dr. Zucker insists it also benefits those students gross anatomy has always served best.

“The days of exploratory surgery are becoming fairly rare thanks to radiology,” Dr. Zucker concludes. “Surgeons know what they’re dealing with, thanks to imaging, and they put their knowledge of anatomy to work before going in. Radiology is also becoming a treating field, as well as a diagnostic tool. Radiologists are blowing out clots and treating aneurysms, which requires a sophisticated knowledge of anatomy.”

– D.G.
field is filled with competitive personalities, but Carmine is warm and congenial with everyone,” adds Dr. Slonecker. “It’s obvious why each new generation loves him.”

DR. CLEMENTE’S COLLEGIAL PERSONALITY is never more apparent than when he’s showing off his office library. As he threads through stacks of antiquarian texts, his passion for anatomy, and teaching, rings clear. “The Sobotta figures I was presented with [to create *A Regional Atlas of the Human Body*] were superb and timeless,” he says, fingering the most recent version of his own primer. “And this,” Dr. Clemente sighs, holding up the U.S. version of Gray’s Anatomy he edited some 20 years ago (based upon the original 1858 version by British anatomist Henry Gray, created for an audience of medical students and physician-surgeons), “was a true labor of love. Every single paragraph was brought up to date.”

Shifts in medicine have altered anatomy’s emphasis over the years, prompting many to decry “love’s labors lost.” Dissection has been truncated, and basic sciences like biochemistry, physiology and anatomy have taken a back seat to clinical problem solving. Dr. Clemente, who says his last great goal in anatomy is to help Dr. Metten shepherd UCLA through its current wave of change, calls the progression a natural one. He says that unlike when he began his teaching career (where first-year students would spend 300 hours a year in the gross lab), anatomy’s role today is to create a language-base for clinical medicine. It’s a way for students to verbalize what they will one day diagnose and treat, as well as a means to reintroduce to young doctors, about to finish their medical-school experience, the specific anatomy that will impact their upcoming residencies.

“Times change,” Dr. Clemente says philosophically, “but you never have to apologize about teaching the human body to medical students.” He leans forward, touching a spot where his right wrist meets the base of his hand. “You know there are three major nerves that feed into the hand, and they spread into many different branches. If you feel at the end of the radius, and go down the size of a half dollar, you’ll find the recurrent branch of the median nerve. It supplies the muscles of the thumb. The median nerve goes through a carpal tunnel, and the recurrent branch often gets injured. This can really be a problem. Just try picking up a pencil without the use of your thumb.” He pauses, and his face lights up. “When students see this median nerve with their own eyes, they are astounded. They had no idea how complex this tiny part of their bodies could be. Neither did I, until I began to study anatomy.”

David Geffner is a freelance writer in Los Angeles.
As America’s vast baby-boomer generation ages, will enough specialized doctors be trained to care for them in their golden years?

By 2030, more than 70 million Americans will be over the age of 65—twice the number counted in the 2000 Census. But even as the baby-boomer generation grays, there already are too few doctors who are specially trained to treat the elderly and their complex healthcare needs, portending a potentially crippling shortage in the years to come.

For a variety of reasons, medical students historically have shown little interest in geriatric medicine. In an era of high-tech healthcare, geriatricians rarely are hailed as stars. And the pay is poor compared to most other specialties. But to their aging and frail patients, these doctors—trained in family practice or internal medicine with at least one additional year of fellowship training in geriatrics—are unsung heroes who treat them with kindness and respect. Their roles as geriatricians have led to tremendous strides in the way some doctors and families view the aged and how they care for them.

It is a specialty that requires a holistic approach; besides providing direct medical care to their patients, geriatricians often spend much of their time coordinating care among different physicians treating their patients for a variety of overlapping chronic physical or mental conditions such as heart failure, diabetes, arthritis, depression and dementia. “Being a geriatrician,” says UCLA geriatric specialist Dr. Deborah Kado, “allows for constant intellectual challenges in diagnosing and treating some of the most complicated cases.”

In fact, some in the field consider geriatrics much broader than a specialty or subspecialty. Dr. William R. Hazzard, a professor of medicine at the University of Washington and co-author of Principles of Geriatric Medicine and Gerontology, the top text in the field, defines geriatrics as a “supraspecialty ... embracing all of the breadth and complexity germane to optimal health and social care of elderly people and necessitating our multidisciplinary, team-oriented modus operandi.”
HOWEVER ONE DEFINES IT, the crying need for more geriatricians is clearly evident. According to a report from the American Geriatrics Society (AGS), the very elderly – people age 85 and older – is now the fastest-growing segment of the entire population. “Unfortunately, we may not be equipped to give them the care and dignity they deserve,” says Dr. David B. Reuben, chief of the Multicampus Program in Geriatric Medicine and Gerontology at UCLA. The Multicampus Program, within the Division of Geriatrics, was established in 1979 and, with more than 50 full-time faculty representing many disciplines, is one of the largest academic geriatrics programs in the world and has been recognized as a national leader in the field.

Along with Dr. Gary Small, director of the UCLA Center on Aging, Dr. Reuben has been on the frontline of the effort to recruit and train more medical students to care for the growing number of seniors who now, and in the future, will need significant medical care and attention. Both say the medical community must address the growing demand for more geriatricians and geriatric psychiatrists. If the demand is not met, “we will be on a course to disaster,” warns Dr. Reuben.

Estimates of the number of geriatricians needed to care for the growing population of elderly ranges from 20,000 to 36,000, according to The Alliance for Aging Research. Currently, there is one geriatrician for every 5,000 adults age 65 and older, reports the AGS, a nationwide, non-profit association of geriatric-healthcare professionals, and statistics indicate that the number of physicians entering the field is shrinking. According to one set of measures, about 9,000 geriatricians practiced in the United States in 1998; in 2006, that number had dropped to 6,700. By 2030, it is estimated that there will be only one geriatrician for every 7,665 older adults – a 50-percent decline over the next 25 years, says the AGS.

The situation appears just as dire for geriatric psychiatry. With increased longevity, risk for many neuropsychiatric illnesses increases, generating a growing need for specialists with expertise in diagnosis and treatment of geriatric mental illness. The AGS and Alliance for Aging Research forecast a “severe and worsening” shortage of geriatric psychiatrists, noting that more than half of available geriatric psychiatry slots go unfilled. There were just 2,100 geriatric psychiatrists in the United States in 2005 to treat older adults. The President’s New Freedom Commission on Mental Health estimated the number of geriatric psychiatrists in the United States in 2005 to treat older adults. The President’s New Freedom Commission on Mental Health Subcommittee on Older Adults predicts that by 2030, there will be about 2,600 geriatric psychiatrists – a numerical increase, perhaps, but still too few to care for the 70 million older adults projected for 2030. “If we conservatively estimate that 15 percent of those people will have such major psychiatric illnesses as dementia and depression, then each geriatric psychiatrist would be caring for more than 4,000 patients, spending less than 30 minutes per year with each of them,” Dr. Small notes.

UCLA is working to address this need with a one-year subspecialty program for geriatricians and geriatric psychiatrists, and additional fellowship years for geriatricians and geriatric psychiatrists interested in academic-career paths. This additional training is enhanced by individual research projects, collaboration with faculty in ongoing investigations, and supervised teaching and administrative experience. In addition, a two-year postdoctoral fellowship for psychologists provides specialized clinical and research training.

UCLA also provides significant exposure to geriatrics during the four years of M.D. training, says Dr. Bruce Ferrell, associate chief for education in the Division of Geriatrics. While the requirements are sprinkled throughout the first- and second-year curriculum with lectures in such subjects as the physiology of aging and molecular biology of aging, there also are required lectures in the third and fourth years, as well as seminars and elective clerkships in the field. All told, Dr. Ferrell says, students can receive up to 80 hours of exposure to geriatrics during their four years of training at UCLA.

ATTRACTION MEDICAL STUDENTS TO CAREERS in the field of gerontology has been a hard sell, Drs. Reuben and Small say, despite the fact that geriatricians report the highest job satisfaction of any specialty, according to a 2002 survey in the journal Archives of Internal Medicine. Other medical centers and universities have had similar experiences. “It is a troubling issue for us,” Dr. Leo M. Cooney, the founder of the geriatrics program at Yale University School of Medicine, told The New York Times last year. In a good year, he said, perhaps one out of 45 residents in internal medicine might decide to be a geriatrician.

To boost interest in the specialty, some states are initiating programs that offer loan forgiveness as an incentive to pursue geriatrics. UCLA and other schools offer grants, fellowships and research opportunities in the field. The federal government also has gotten involved, with a bill introduced in May, the Geriatricians Loan Forgiveness Act of 2007, to extend the National Health Service Corps Loan Repayment Program to training in geriatric medicine or geriatric psychiatry. If passed, the program would forgive $35,000 in educational debt incurred by medical students for each year of fellowship training in geriatric medicine or geriatric psychiatry. The bill, which is now in committee, would require an individual to provide services in geriatric medicine or psychiatry during a period of obligated service.

Geriatrics is a “noble profession” that should attract students who are passionate about providing patient-centered care to the elderly, as well as enhancing their quality of life, says Dr. Reuben. Yet, he reports statistics similar to those cited by Dr. Cooney of Yale: “If we get one or two new students a year, it is a resounding success,” Dr. Reuben says.

For many young physicians deciding what career path to take, compensation is a major consideration, “particularly for those students who may be staring at $150,000 or more in school debt,” says Dr. Reuben. And geriatrics, as important a field as it may be, just does not enjoy the prestige or pay of other specialties. According to a report in The New York Times, radiologists and orthopaedic surgeons – procedure-intensive specialties – top the compensation ladder with average annual incomes of $400,000 or more; geriatricians linger near the bottom, at about $150,000 a year.

One reason behind the disparity is that geriatricians depend almost entirely on Medicare revenues, states a report from the AGS and the Association of Geriatric Academic Programs. The report

To hear more from the doctors interviewed for this article, go to http://streaming.uclahealth.org/geriatricmedicine
BY 2030, IT IS ESTIMATED THAT THERE WILL BE ONLY ONE GERIATRICIAN FOR EVERY 7,665 OLDER ADULTS – A 50-PERCENT DECLINE OVER THE NEXT 25 YEARS.

states that Medicare does not factor the time it takes to spend with older patients and their families, visiting patients in nursing homes and coordinating care with other physicians. Often, doctors also must spend considerable time working with agencies and departments to assist their elderly patients, as well as assessing cognitive and mental issues. As a result, they do not receive proper reimbursement for the time they put in, according to the group.

CERTAINLY, MEDICAL PRACTICES AND SKILLS VARY, yet geriatricians may argue that their role in caring for older adults is profound and continues to shape the way society treats its elderly. Dr. Small points out that doctors who have not been trained specifically to treat the elderly may incorrectly diagnose older patients or are at risk for not recognizing certain diseases or drug interactions that might affect the elderly. (The National Center for Health Statistics estimates that medication problems may be involved in up to 17 percent of all hospitalizations of older persons.)

“If doctors are out of touch with caring for older patients, they could end up treating an 85-year-old the same way they would care for a 50-year-old,” Dr. Small notes. “The healthcare system tends to limit the time doctors spend with patients, and they can miss critical mental and physical problems if they are unfamiliar with symptoms that are expressed in the aged.”

The University of Washington’s Dr. Hazzard is among those who point to a lack of “respect and support for those who care for the elderly,” seeing in the shortage of geriatrics and limited interest in the field a reflection of what he calls “society-wide denial of aging.”

Ageism, Dr. Small says, also is a factor in why some students avoid working with the elderly. Some find it uncomfortable or depressing to treat those who have multiple and often highly debilitating health problems, which may include dementia or Alzheimer’s disease. Treating elderly patients often is as much, if not more, about managing their conditions rather than curing them, and many young doctors selecting a specialty prefer to work with patients they feel they have a chance of curing.

But there are some students for whom the challenge of treating elderly patients is a powerful magnet. Consider Navid Ezra, a second-year medical student at the David Geffen School of Medicine at UCLA, who decided, after working with a geriatrician during an internship at an adult day healthcare center, to focus on geriatrics as a specialty. Geriatricians “seem to have more patience than some of the other specialists,” he says. “They spend more time with their patients, and really listen and empathize with them.” Having the opportunity to talk and listen to the elderly patients before and after surgery was invaluable, he says. “They allowed me to have a part in their healing process. No science. No drugs. Just concern and conversation. It fortified my desire to work with the elderly ... and motivated me to learn about diseases of aging.”

Medical professionals are banking on the hope that, with incentives, more students like Ezra will embrace the specialty. Toward that end, the Association of American Medical Colleges has offered a program, sponsored by the John A. Hartford Foundation, to grant awards to U.S. medical schools to enhance their gerontology and geriatrics curriculum. The Donald W. Reynolds Foundation, through its Aging and Quality of Life program, also has made significant grants to support comprehensive projects in academic health centers to train medical students, residents and practicing physicians in geriatrics. In 2004, UCLA was among four academic health centers – including Duke University, Johns Hopkins University and New York’s Mount Sinai Medical School – to receive a total of $12 million, $3 million each, over six years to establish the Donald W. Reynolds Consortium to Strengthen Faculty Expertise in Geriatrics in U.S. Academic Health Centers.

Still, authorities in the field are concerned that, even with incentives, not enough geriatricians can be trained to meet the need. Uneasy about what the future may hold for the aging population, Dr. Kado suggests a universal approach, arguing that to meet the oncoming tsunami of aging baby boomers, medical schools “need to teach all medical students about the sensitive needs of the geriatric population, regardless of what specialty the students might ultimately choose.” It is unrealistic, she says, to think that, even if more students were to rush to gerontology, schools will be able to train enough geriatricians to fill the need.

FOR PATIENTS AND THEIR FAMILIES, a skilled and caring geriatrician can make all the difference. Juliet Kendriek was one such patient. Before coming to the UCLA geriatric center, the retired nurse bounced from one doctor to another seeking help for a variety of health problems. At one facility, she was treated like a child. At another, she was told to stop complaining, she was just getting old. The experience, recalls her daughter, left the elderly woman frustrated and angry. “It was very hard on my mother, especially when she was treated with disrespect,” says Helga Scow Sterns.

At UCLA, which U.S. News & World Report ranked No. 1 in the country in 2007 for its clinical geriatrics program, Kendriek came under the care of Dr. Kado and other physicians in the Multicampus Program in Geriatric Medicine and Gerontology. “My mother felt very loved and cared for,” Scow Sterns recalls. When doctors diagnosed Kendriek with a virulent form of cancer, Dr. Kado spent extra time to reassure her, and made sure she was sent to all the right doctors, her daughter says. When her condition worsened, the center doctors did everything they could to make sure she was comfortable. And when Kendriek died, at the age of 86, Dr. Kado went to her memorial service.

Without such caring, Scow Sterns says, her mother would not have had the quality of life she enjoyed up to her final days. “These doctors seem to truly love their work,” the daughter says. “They are a special breed.”

Jeanne Wright is a freelance writer in Los Angeles.
Remembering Dr. Dignam 1921-2006

EVERYONE KNOWS that Dr. William J. Dignam, who died in December 2006 at the age of 85, was an eminent physician. Among many other titles, he was president of the American Gynecological and Obstetrical Society, so it is not surprising that people sought him out to have him deliver their children – 30,000 in all, a veritable city of babies.

Less well-known, perhaps, is the fact that Dr. Dignam also wore many other hats. He was, first and foremost, a family man. The light of his life was Mrs. Winifred Dignam, an airline stewardess so beautiful that she was pursued by the actor Errol Flynn – that is, until Dr. Dignam, fresh from combat duty in the South Pacific, swooped in and, providing a happily-ever-after ending to a courtship that began prior to the start of the war, married her. (Mrs. Dignam died in July 2007 at the age of 87.) Together they raised four daughters, one of whom competed on the grass courts of Wimble-

Dr. William J. Dignam with his family and an unidentified infant in the 1970s (top), and while on staff at UCLA School of Medicine.

Awards/Honors

DR. LORI L. ALTSHULER, professor-in-residence at the Semel Institute for Neuroscience and Human Behavior at UCLA, received the Falcone Prize for Affective Disorders Research from the National Alliance for Research on Schizophrenia and Depression (NARSAD): The Mental Health Research Association for her work on bipolar disorders, women and depression. Dr. Altshuler also received a Distinguished Investigator Award from the organization, recognizing her use of imaging to understand brain structures and behavior in people with bipolar disorder.

DR. GERALD D. BUCKBERG, distinguished professor of cardiothoracic surgery, was awarded the 2007 Scientific Achievement Award by the American Association for Thoracic Surgery for his significant contributions in the field of myocardial preservation and his study of the anatomy and functional changes that cause heart failure.

DR. RONALD W. BUSUTTIL, professor and executive chairman of surgery, who holds both M.D. and Ph.D. degrees, received the Medallion for Scientific Achievement, the highest honor bestowed by the American Surgical Association. Internationally recognized for his expertise in liver transplantation and hepatobiliary surgery, Dr. Busuttil is the founding chief of liver and pancreas transplantation at UCLA.

DR. LOUIS J. IGNARRO, professor of pharmacology, was elected to the American Philosophical Society, which recognizes extraordinary achievements in science, letters and the arts. Dr. Ignarro received the 1998 Nobel Prize in physiology or medicine for his groundbreaking discovery of the importance of nitric oxide in cardiovascular health.

DR. PAUL MISCHEL, professor of pathology and laboratory medicine, received the Farber Award from the American Association of Neurological Surgeons and Society for Neuro-oncology. The award recognizes promising investigators who achieve significant results early in their careers. Dr. Mischel’s research focuses on developing molecularly targeted treatments for brain tumors.

DR. MARSHALL MORGAN, professor and director of emergency medicine, received the 2007 Sherman M. Mellinkoff Faculty Award. Considered the highest award given by the David Geffen School of Medicine at UCLA, the Mellinkoff Award celebrates an ongoing commitment to patients and medical education.

DR. JEFFREY L. SAVER, professor of neurology and director of the UCLA Stroke Center, received the American Heart Association (AHA) Stroke Council Award for his research that focuses on the prevention, diagnosis and treatment of stroke, encompassing neuroimaging, clinical-trial design and the neurocognitive consequences of stroke.

DR. MARTIN F. SHAPIRO, professor of medicine and chief of general internal medicine and health services research, received the Herbert W. Nickens Award from the Society of General Internal Medicine, for his commitment to cultural diversity in medicine. He is internationally recognized for his work on access to care, health disparities and the care of people with HIV.

DR. DENNIS J. SLAMON, professor of medicine and chief of hematology/oncology and director of clinical/translational research at the UCLA Jonsson Comprehensive Cancer Center, received the Warren Alpert Foun-
In Memoriam

DR. SAMUEL EIDUSON, professor emeritus of biological chemistry and psychiatry and biobehavioral sciences, died June 19, 2007. He was 88 years old. Dr. Eiduson completed his undergraduate work and earned a Ph.D. in biochemistry at UCLA. In 1955, he founded the Neurobiochemistry Laboratory at the Brentwood V.A. Hospital, which was one of the early laboratories dedicated to the study of the biochemistry of the brain. In 1974, he became the first chairman of the Interdepartmental Neuroscience Ph.D. Program at the Brain Research Institute, which, for the past 15 years, has celebrated the Samuel Eiduson Student Lecture to recognize an outstanding neuroscience graduate student.

DR. HOWARD L. JUDD, professor emeritus in the Department of Obstetrics and Gynecology, died July 19, 2007, at his home in Santa Monica. He was 71 years old. Dr. Judd joined the UCLA faculty as a professor and chief in the Division of Reproductive Endocrinology and Infertility in 1977, after beginning his academic career at UC San Diego. He was internationally recognized for his research in menopause, endometriosis and polycystic ovarian disease. He was the principal investigator at UCLA of the NIH-funded Woman's Health Initiative Grant from 1994 until his retirement in 2005.

REV. JAMES PUTNEY, the outpatient oncology staff chaplain at UCLA Medical Center for nearly 10 years, died August 14, 2007. He was 55 years old. The popular chaplain stood just under 4 feet tall due to a form of dwarfism that necessitated numerous surgeries before he reached adulthood and gave him a particular empathy with patients. Rev. Putney was also on the medical school faculty and mentored students in the doctoring program.

DR. E. RICHARD STIEHM, professor of pediatrics in the Division of Immunology/Allergy/Rheumatology at Mattel Children's Hospital UCLA, received the 2007 American Society of Microbiology's Abbott Laboratories Award in Clinical and Diagnostic Immunology for his outstanding accomplishments in research and treatment of primary and secondary immune-deficiency disorders in infants and children.

Grants

Funding agency: National Institute of Mental Health
Grant amount: $3.8 million
Grant duration: 4 years
Principal investigator: Dr. Roel A. Ophoff, assistant professor of psychiatry and biobehavioral sciences
Summary: UCLA will lead a genetic study of schizophrenia, which will be among the first to study the complete human genome – the full set of human genes – in order to pinpoint those related to this mental disorder.

Funding agency: National Institutes of Health
Grant amount: $22.5 million
Grant duration: 5 years
Principal investigator: Dr. Robert M. Bilder, professor of psychiatry and biobehavioral sciences and psychology
Summary: The Consortium for Neuropsychiatric Phenomics (CNP) aims to examine key behavioral, cognitive and neural-system traits (phenotypes) that are theoretically important vulnerability factors for diverse neuropsychiatric disorders, and determine their associations with genotypes and biological mechanisms, integrating studies in patients and healthy people with basic research. The CNP will also develop new analysis methods and tools to evaluate complex scientific models relating the whole genome to neuropsychiatric syndromes.

Funding agency: National Institute of Diabetes and Digestive and Kidney Diseases
Grant amount: $7 million
Grant duration: 5 years
Principal investigator: Dr. Mark S. Litwin, professor of urology and public health
Co-principal investigator: Dr. Christopher Saigal, associate professor of urology
Summary: This study and report on the impact of urologic diseases in America will help address insurance coverage, access to care, allocation of research dollars and availability of treatment and services.

Funding agency: National Institutes of Health
Grant amount: $45.5 million supplemental funding to $12.8-million grant received in 2005
Grant duration: 3 years
Principal investigator: Dr. Peter A. Anton, professor of medicine in the Division of Digestive Diseases
Summary: Researchers will develop microbicides, which are products to help prevent or reduce the transmission of sexually transmitted infections like HIV.
An Apple for Teacher

CHRISTIAN DE VIRGILIO, M.D. ’86, was 20 years old when he started medical school and took the first steps to fulfill a futurist essay he wrote when he was 12 – a high school assignment in which he described attending medical school at UCLA and becoming a physician.

Today, Dr. de Virgilio is a professor of surgery at the David Geffen School of Medicine at UCLA, where he has taught since 1993. A dedicated teacher, he is respected by his students and has received high honors for his teaching, including the 2007 National Golden Apple for Teaching Excellence Award by the American Medical Student Association (AMSA). AMSA presents the National Golden Apple Award annually to honor the contributions of a medical school professor who has made a significant impact on the educational value that a medical student receives from his or her coursework.

Moreover, Dr. de Virgilio received UCLA’s Golden Apple Award as Faculty Teacher of the Year in 1998 and again in each year from 2000 through 2006.

In addition to serving as a career and research mentor for more than 80 undergraduate, graduate and postgraduate students and residents over the last 10 years, Dr. de Virgilio hosts an informal dinner at his home for medical students interested in surgery and MAA members who are in surgical careers or residencies.

Currently, Dr. de Virgilio serves on the MAA Board of Directors and he is the vice chair of education and director of the General Surgery Residency Program at Harbor-UCLA Medical Center. Through his professional life, he upholds the mission of the MAA: to advance the cause of medical education, contribute to the excellence of the David Geffen School of Medicine at UCLA and encourage fellowship among the members of the MAA.

Reflections on Dr. de Virgilio

ROLE MODEL, TEACHER AND FRIEND. Dr. Christian de Virgilio has been all three to me during the time I have known him while a medical student at UCLA. Rarely have I had a teacher believe in me the way that Dr. de Virgilio did. He has been a constant source of encouragement and support, and has mentored me since I decided on a career in surgery.

What makes Dr. de Virgilio so special is that he is real, honest and relatable. Everyone who knows him loves him, whether it is a patient in the county hospital or a medical student getting her first exposure to surgery. His humor, humanistic qualities and spirit of leading by example help shape students’ lives, and I am no exception.

He has touched my life and helped define my goals, and it was an honor for me to nominate him for the 2007 National Golden Apple for Teaching Excellence Award by the American Medical Student Association (AMSA) at AMSA’s 57th Annual National Convention in Washington, D.C.

— Kimberly Shapiro, M.D. ’07
Books Without Borders

RATHER THAN LET UNUSED MEDICAL BOOKS and journals gather dust on the shelf, UCLA medical alumni, students, faculty and emeriti have donated their texts to a program launched earlier this year by the Medical Alumni Association (MAA) to collect educational materials for hospitals and medical schools in Iraq.

Books Without Borders has been a collaboration of the MAA and the U.S. Army, the David Geffen School of Medicine at UCLA, UCLA School of Nursing, UCLA Health Sciences Store and the Los Angeles County Fire Department to collect and donate used texts, journals and reference materials published since 1994.

Response from the UCLA community has been outstanding. One group from the San Francisco Bay sent a container filled with 100 pounds of materials. A professor in the David Geffen School of Medicine at UCLA donated her microscope from medical school. More than 2,000 medical texts and journals – nearly 5,000 pounds of material – have been delivered to medical schools and hospitals throughout Iraq by the U.S. Army.

The materials are used to teach medical students, nurses, laboratory technicians, EMTs and others in ancillary fields. Providing the tools for Iraqi doctors and medical students to improve their skills and education will be a critical step in reconstruction.

Much of the decay in the Iraqi healthcare system began with the reign of Saddam Hussein. The medical system became very isolated during the last decade of his regime, and doctors weren’t allowed to go outside of the country to train. It really shut down progress in medicine. Today, Iraqi doctors are working to restore the medical-education system at all levels and in all fields, and they are grateful for donations of medical textbooks or journals. It is a difficult effort, however, because insurgents have targeted medical professionals, and many doctors have fled the country.

Any materials published since 1994 are considered current in Iraq. While Iraq’s doctors and students would benefit from all the information that is available on the Internet, the lack of electricity, slow access and limited availability of computers make it difficult for most doctors and students to access its resources.

English is the language of medical instruction in Iraq. Books covering the basics of anatomy, physiology and pharmacology are in particular demand, and multiple copies will be beneficial for the medical schools and reference libraries at Tikrit Teaching Hospital and Mosul University. There are several nursing and vocational schools across the north of Iraq, including Diyala and Tikrit, that also needed materials.

Though the program is no longer accepting donations of books, it still is receiving journals. To donate, call MAA Director Valerie Walker at (310) 794-4025, or email vwalker@support.ucla.edu.

—Dr. Laura Pacha, M.D. ’98

About the Writer

DR. LAURA PACHA, M.D. ’98, grew up an Army brat, following her father as he moved from base to base around the country. Today, she is a major in the U.S. Army. In August 2006, she was deployed with the 25th Infantry Division to northern Iraq, where she served as the public-health officer responsible for more than 20,000 soldiers, service members, contractors and civilian Department of Defense employees in the region. Dr. Pacha attended UCLA medical school on an Army Health Professions Scholarship and completed her residency in preventive medicine at Walter Reed Army Institute of Research.

Rally for Reunion 2008

Mark your calendar for the weekend of April 11-12, 2008, to reconnect and reminisce with classmates from medical school. The weekend’s events will offer wonderful opportunities for you to return to the Westwood campus and reflect upon your experiences as a medical student and the friendships you formed at UCLA.

Each class needs reunion representatives to be in touch with classmates and encourage attendance. If you would like to be a reunion representative, call the UCLA MAA office at (310) 825-0988, or email maa@support.ucla.edu.

Loretta Gilker Milburn, M.D. ’62 (left), and Lucia Carpenter Dean, M.D. ’62, reunite at Reunion 2007.

For more information on MAA reunions, visit www.medalumni.ucla.edu/reunion.html
A Gift to Accelerate Stem-Cell Research

A $20-MILLION GIFT from The Eli and Edythe Broad Foundation will advance adult and embryonic stem-cell research at UCLA. The funds will go to purchase specialized high-tech laboratory equipment and support faculty recruitment through research grants and endowed professorships.

In recognition of the gift, the Institute for Stem Cell Biology and Medicine at UCLA has been renamed the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. The center is at the epicenter of stem-cell research in California where biologists, chemists, engineers, geneticists and other scientists collaborate to develop new and more effective treatments for cancer, HIV/AIDS, Parkinson’s disease, metabolic disorders and other medical conditions.

The gift from Eli and Edythe Broad – philanthropists who, over the past five years, have given $265 million to scientific and medical research – will enable UCLA to continue its leadership in cutting-edge, multidisciplinary scientific and medical research in this new frontier that holds enormous promise for regenerative medicine.

“We have invested $265 million in genomics and stem-cell research because we believe that our investment has the potential to yield the most-valuable return possible: to improve the human condition,” says Eli Broad.

Dr. Owen Witte, professor of microbiology, immunology and molecular genetics and a Howard Hughes Medical Institute investigator, leads the center, which was launched in 2005 with a $20-million commitment over five years from the university. The center has recruited some of the country’s top scientists in the field — from renowned institutions such as Harvard, MIT and Johns Hopkins — to fill six of the 12 new faculty positions.

“This is huge in many senses of the word,” Dr. Witte says. “In addition to the amount of money being quite wonderful, it’s flexible money to spend on what we think are the most important things when we need them.” The goal, Dr. Witte says, is “to accelerate the pace and make things happen more quickly. This gift will be used to expedite our research mission in many ways … [and] it will support the most innovative approaches to developing new kinds of therapies.”

To learn more about the Broad Center, go to http://streaming.uclahealth.org/Broad-Center

Dr. Mitchel D. Covel 1917-2007

DR. MITCHEL D. COVEL, associate dean of development and community relations at the David Geffen School of Medicine at UCLA, died September 21, 2007, of natural causes. He was 90 years old. A gifted physician, educator and mentor, Dr. Covel was also a philanthropic leader. In 1998, the Susan G. Covel and Mitchell D. Covel, M.D., Commons – a cornerstone of UCLA’s Sunset Village student-housing complex – was dedicated in tribute to the generosity of Dr. Covel and his wife.

In 1974, Dr. Covel co-founded The Aesculapians, the medical school’s premier support organization. For two decades, he led the organization toward raising more than $18 million in unrestricted funding. He also co-founded the UCLA Medical Alumni Association. Dr. Covel co-chaired Campaign UCLA, the university’s highly successful fund-raising campaign, as well as chaired The UCLA Foundation and its Board of Governors. In 1990, he joined The UCLA Foundation Board of Trustees.

Dr. and Mrs. Covel were enthusiastic philanthropists who not only supported the David Geffen School of Medicine at UCLA, but also made major gifts to the College of Letters and Science, the Department of Intercollegiate Athletics and the School of the Arts and Architecture, where an endowed chair in music was established in their name.

In 1934, Dr. Covel enrolled as an undergraduate at UCLA. He earned his M.D. degree at UC San Francisco, and was decorated for his courageous service as a battalion surgeon in World War II. After returning to Southern California, he established a private practice in internal medicine and cardiology, and he joined the clinical faculty of UCLA’s medical school in 1960. Dr. Covel is survived by his wife, Susan, and by two children, David Giler and Kendall Giler-Bradshaw.
In Memoriam

Robert H. Ahmanson, a trustee of the Jules Stein Eye Institute, UCLA alum (49) and president of The Ahmanson Foundation, died September 1, 2007, at his home in Los Angeles. He was 80 years old. Ahmanson is survived by his wife, Kathleen, two sons, a daughter and seven grandchildren.

Sally Bennett, who helped to launch The Aesculapians and was a recipient of its Service Award in 1996, died in June 2007. She and her husband, Paul S. Bennett, were active with the Ahmanson/UCLA Adult Congenital Heart Disease Center, digestive diseases, urology, Center on Aging, as well as athletics and UCLA’s major campaigns.

Martin S. Blinder, who, with his wife, Janet, founded the Blinder Research Foundation for Crohn’s Disease, died March 16, 2007. He is survived by his wife, daughter and two sons.

Walter Oppenheimer, a dedicated supporter of UCLA Medical Sciences and UCLA School of Public Health, died August 1, 2007. He was 92 years old. He and his late wife, Helga, endowed the Helga and Walter Oppenheimer Chair of Musculoskeletal Oncology at UCLA, currently held by Dr. Jeffrey J. Eckardt.

Nathan Shapell, a major donor to UCLA who pledged $1 million to support the UCLA Neuro Repair and Rehabilitation Program in the Department of Neurology, died March 11, 2007. He was 85 years old. He is survived by a daughter, three grandchildren and three great-grandchildren.

Caroline W. Singleton died June 10, 2007, at her home in Los Angeles. She was 87 years old. To honor the memory of her late husband, Henry E. Singleton, who founded Teledyne, she and her family established the Henry E. Singleton Neuro-Diagnostic and Treatment Center in the new Ronald Reagan UCLA Medical Center. She is survived by five children and four grandchildren.

Gifts

The **Annenberg Foundation** has made a $10-million gift to Ronald Reagan UCLA Medical Center. The Wallis Annenberg Concourse, named in recognition of this valued contribution, will be the main concourse through the hospital’s first floor and lobbies. Wallis Annenberg and the Annenberg Foundation have provided this vital support to augment government funding and help enable UCLA to create a medical center that will be the site of better medical treatments, discoveries of cures, new preventive approaches, and exceptional education and training programs – all of which will ultimately save lives and improve quality of life.

Lynn and Douglas Brengel are long-time friends of the David Geffen School of Medicine at UCLA and the UCLA Kidney Transplant Program. Their gift of $250,000 is to be used by Dr. Gabriel Danovitch to support the fellowship program.

A $1-million donation from **William E. (Chip) Connor and Family** was received by the newly established University of California Foundation Limited, a qualified charitable organization in Hong Kong. The gift will create an endowed chair, the William E. Connor Chair in Cardiothoracic Transplantation. It will provide leadership for ongoing surgical research in heart and lung transplantation for adult and pediatric patients with end-stage heart and lung diseases, as well as research to define the mechanisms of the body’s immune responses to transplanted organs.

A $1-million pledge was received by the Division of Neurosurgery from **Evelyn A. Freed** to help advance the research of Division Chief Dr. Neil Martin. Mrs. Freed’s father started the Wilden Pump & Engineering Co. with a pump he invented in the 1950s. After her father’s passing, she ran Wilden before selling it to a corporation that took it global. Says Mrs. Freed, “My goal ... is to help people all over the world.”

In January 2007, **Kenneth Jonsson** established the Diana Gordon Jonsson Directors Endowment Fund, in memory of his late wife, with a $1-million gift to the Jonsson Cancer Center Foundation. It will underwrite the UCLA Jonsson Comprehensive Cancer Center’s annual donor-recognition dinner and provide the Diana Gordon Jonsson Award for Clinical Excellence and Diana Gordon Jonsson Award for Hope and Inspiration.

Dr. Hooshang Kangarloo, UCLA professor emeritus of radiology, pediatrics and bioengineering, contributed $500,000 to establish the Taslimi-Kangarloo Endowment. It will support and help advance educational and research programs in medical and imaging informatics.

Leslie and Martin Landis have established the Shlomo Raz, M.D., Chair in Urology, a term chair with five-year appointments. They made this gift in tribute to Dr. Raz, current chief of the Division of Female Urology, Reconstructive Surgery and Urodynamics. Their contribution serves as a challenge gift for the Department of Urology to secure matching funds in order to convert the chair to a permanent appointment chair.

An interest in memory loss and a genuine concern for others inspired **Jacqueline and James McMahan** to make a $250,000 gift to the Memory and Aging Research Center, led by Dr. Gary Small, the Parlow-Solomon Professor on Aging. Their support will be used to help investigators study the effects of curcumin on cognitive function and the accumulation of amyloid brain plaques in people with mild cognitive impairment.

In May, the **MSST Foundation** made two major gifts: a five-year pledge of $500,000 for research on comorbidity of bipolar disorder and ADHD.
In 2007, Friends Center at UCLA. The center's mission is to improve the overall health of the community. Funds will be used to renovate space, build a biomarkers intake laboratory and support novel research activities.

Guitiara and William L. Pierpoint made a gift of $1 million to endow the Guitiara Pierpoint Chair in Interstitial Pulmonary Fibrosis to support a faculty member in the UCLA Interstitial Lung Disease Program. It is the first chair established in the Division of Pulmonary, Critical Care Medicine, and Hospitalists, led by Dr. Steven Dubinett.

Dr. Antoni Ribas. The V Foundation for Cancer Research was founded in 1993 by ESPN and the late Jim Valvano, legendary North Carolina State University basketball coach and ESPN commentator.

Carol and Joe Weller donated $315,000 to the UCLA Kidney Transplant Program to support its Fellowship Program. The funds are to be used under the direction of Dr. Gabriel Danovitch, program director. This gift was their first to UCLA.

A $750,000 commitment has been received from the V Foundation–Gil Nickel Fellowship in Melanoma Research, honoring the late proprietor of Napa Valley’s Far Niente, Nickel & Nickel and Dolce wineries, who died from melanoma in 2003. This fellowship will enable the UCLA Jonsson Comprehensive Cancer Center to recruit and train a new generation of researchers led by Dr. Antoni Ribas. The V Foundation for Cancer Research was founded in 1993 by ESPN and the late Jim Valvano, legendary North Carolina State University basketball coach and ESPN commentator.
In Peace
By Dr. Fred Kimura, M.D. ’04

DURING THE SUMMER after his first year of medical school at UCLA, Dr. Fred Kimura traveled to Mexico for an intensive six-week course to study medical Spanish. It was in a small museum in the colonial city of Morelia that he came across this painting of a reclining monk hanging above a rustic bench with a robe and sandals. “The scene had a quiet simplicity and reflective spirituality that I wanted to take home with me,” says Dr. Kimura, who is now a fourth-year resident in emergency medicine at Jacobi/Montefiore Medical Center in New York. “It was unclear to me if the monk is sleeping or laid to rest, but he appears to be at peace, and the empty robe on the bench gives the image an extracorporeal feel of release from one’s earthly bonds.”

This photograph was originally published in the 2002 issue of UCLA BEAT, the literary magazine of the David Geffen School of Medicine at UCLA.
Coming up:
Ronald Reagan UCLA Medical Center opens in 2008! Read all about it in our next issue.